|国家科技期刊平台
首页|期刊导航|南京信息工程大学学报|基于SSA-BP-SVM模型的云龙湖水质反演研究

基于SSA-BP-SVM模型的云龙湖水质反演研究OA北大核心CSTPCD

中文摘要

利用遥感技术进行水质监测,全面地掌握水质分布情况对水环境保护具有重要意义.水质参数与地表反射率并非简单的线性关系,BP神经网络和支持向量机(SVM),因其非线性模拟的特点,被广泛应用于水质反演.传统BP神经网络存在收敛缓慢、容易陷入局部最优的问题;SVM虽然具有很好的拟合能力,但受惩罚系数及核函数参数影响较大.以云龙湖为研究区域,利用Sentinel-2影像和实测数据,针对重要水质参数电导率和浊度,提出一种基于麻雀搜索算法(SSA)优化BP神经网络及SVM的水质反演耦合模型,利用SSA对BP神经网络及SVM进行参数寻优,基于验证集MAE计算模型权重,对SSA-BP、SSA-SVM模型测试组输出层加权计算后获得最终反演结果.与BPNN、SVM、SSA-BP、SSA-SVM模型对比,结果表明:(1)Sentinel-2影像对电导率及浊度的敏感波段均为可见光及短波红外波段;(2)SSA-BP-SVM水质反演耦合模型精度更高,电导率及浊度反演模型R 2分别为0.92、0.89;(3)云龙湖具有典型的城市水体特征,电导率受上游南望净水厂排水影响较大,浊度受社会生产活动带来的颗粒污染物影响较大.基于Sentinel-2影像利用SSA-BP-SVM模型进行水质反演具有较好的应用潜力,能够为云龙湖水质监测以及制定保护措施提供一定的技术支撑.

任中杰;

江苏省水文水资源勘测局徐州分局,徐州221006

环境科学

BP神经网络支持向量机麻雀搜索算法电导率浊度

《南京信息工程大学学报》 2024 (002)

P.279-290 / 12

10.13878/j.cnki.jnuist.20230607001

评论