|国家科技期刊平台
首页|期刊导航|高电压技术|基于模型数据混合驱动的大规模双馈风电场并网数字孪生建模

基于模型数据混合驱动的大规模双馈风电场并网数字孪生建模OA北大核心CSTPCD

Digital Twin Modeling for Grid-connected Large-scale Doubly Fed Wind Farms Based on Model-data Hybrid Drive

中文摘要英文摘要

当前双馈风机详细模型具有多时间尺度动态和复杂控制环节,导致建模困难、大规模双馈风电场并网详细仿真建模所需算力庞大的问题.实际风机并网外特性无法实时反馈到仿真系统中,同时风电场功率输出受到多方面如风速、风向、老化等影响,使仿真系统无法精确拟合真实电力系统.针对这一问题,该文构建大规模数字孪生双馈风电场并网的电力系统模数混合驱动模型,实现了风机与电网互动反馈的实时更新,降低了算力需求,同时与风机物理实体实时匹配的虚拟模型具备较高的输出精度,满足精细化仿真需求.文中每台双馈风机采用长短期记忆网络构建数据驱动模型,风电场架构及所并电网选取常用的物理仿真模型,以数字孪生技术实现风机物理模型维护、虚拟数据模型更新的双向反馈.算例通过真实量测数据测试,结果表明在不同工况下该双馈风电场并网数字孪生模型较传统模型具备更优秀的拟合能力与精准度,同时实现了虚拟模型的实时更新能力.该模型有助于在大规模风电场并网中探寻具体某台风机故障、控制方式变化、风速波动等情况,研究风机之间相互影响、电网出现扰动时对风电场的影响.

Nowadays,the detailed model of doubly-fed wind turbine has multi-time scale dynamics and complex control links,which leads to difficulties,in modeling and that the detailed simulation modeling of large-scale doubly-fed wind turbines'farm requires huge computational forces.The grid-connected characteristics of actual wind turbines cannot be fed back into the simulation system in real time.The power output of wind farms is affected by many aspects,such as wind speed,wind direction and aging.The simulation system can not accurately fit the real power system.To solve this problem,this paper builds a hybrid model-data driven model for grid-connected power system of large-scale digital twin doubly-fed wind turbines'farm,which realizes real-time update of interactive feedback between wind turbine and power grid and reduces computational force requirements.At the same time,the virtual model matching real time with the wind turbine physical entity has higher output accuracy and meets the requirements of fine simulation.In this paper,each dou-bly-fed wind turbine uses the long and short term memory network(LSTM)to build a data-driven model.The wind farm architecture and the connected power grid select the common physical simulation model,and the digital twin technology is used to realize the two-way feedback of wind turbine physical model maintenance and virtual data model update.The example is tested by real measurement data,and the simulation results show that the digital twin model of the doubly-fed wind turbines'farm has better fitting ability and accuracy than the traditional model under different working conditions,and realizes real-time updating ability of the virtual model.This model is helpful to exploring the fault of a specific wind turbine,the change of control mode,the wind speed fluctuation and other conditions in large-scale wind farm grid-connection,and is helpful to studying the influence of wind turbine interaction and grid disturbance on wind farm.

薛邵锴;秦文萍;张东霞;朱志龙;张永勤;李森良

电力系统运行与控制山西省重点实验室(太原理工大学),太原 030024中国电力科学研究院有限公司,北京 100192

数字孪生长短期记忆网络大规模风电场并网DFIG实时更新功率预测

digital twinLSTMlarge-scale wind farm integrationDFIGreal-time updatepower prediction

《高电压技术》 2024 (003)

支撑新能源消纳的广域储能集群研究

1025-1033 / 9

国家自然科学基金(51777132);山西省"1331"工程重点创新团队建设计划(1331KIRT). Project supported by National Natural Science Foundation of China(51777132),Shanxi Province"1331"Project Key Innovation Team Construction Program(1331KIRT).

10.13336/j.1003-6520.hve.20230164

评论