| 注册
首页|期刊导航|高电压技术|压缩感知和图卷积神经网络相结合的宽频振荡扰动源定位方法

压缩感知和图卷积神经网络相结合的宽频振荡扰动源定位方法

王渝红 李晨鑫 周旭 朱玲俐 蒋奇良 郑宗生

高电压技术2024,Vol.50Issue(3):1080-1089,10.
高电压技术2024,Vol.50Issue(3):1080-1089,10.DOI:10.13336/j.1003-6520.hve.20221861

压缩感知和图卷积神经网络相结合的宽频振荡扰动源定位方法

Localization Method of Wide-band Oscillation Disturbance Sources Based on Compressed Sensing and Graph Convolutional Neural Networks

王渝红 1李晨鑫 1周旭 1朱玲俐 1蒋奇良 1郑宗生1

作者信息

  • 1. 四川大学电气工程学院,成都 610065
  • 折叠

摘要

Abstract

The wide-band oscillation caused by the grid connection of new energy seriously threatens the security of the power grid.It is particularly necessary to realize the online location of the broadband oscillation source and take timely suppression measures to ensure the safety and stability of the system.In this paper,a broadband oscillator location method combining compression sampling and graph convolution neural network is proposed.This method firstly sparsely samples the time-series oscillation signal in the substation to obtain its low dimensional observation sequence as the time sequence information of the node,and then captures the adjacency of each node in the topology structure of the master station fu-sion system,comprehensively considers the time-space characteristics of the system oscillation,and uses graph convolution neural network to locate the oscillation disturbance sources.Finally,the broadband oscillation sample set is used for simulation verification.The results show that the proposed method has high positioning accuracy when the measurement data contains noise,the transmission data is missing and the transmission data is biased.

关键词

新能源发电/宽频振荡/振荡源定位/压缩感知/时空特性/图卷积神经网络

Key words

renewable energy/wide-band oscillation/oscillation source localization/compressed sensing/time-space characteristic/graph convolutional neural network

引用本文复制引用

王渝红,李晨鑫,周旭,朱玲俐,蒋奇良,郑宗生..压缩感知和图卷积神经网络相结合的宽频振荡扰动源定位方法[J].高电压技术,2024,50(3):1080-1089,10.

基金项目

国家重点研发计划(响应驱动的大电网稳定性智能增强分析与控制技术)(2021YFB2400800) (响应驱动的大电网稳定性智能增强分析与控制技术)

国家电网有限公司科技项目(响应驱动的大电网稳定性智能增强分析与控制技术)(SGSDDK00WJJS2200092). Project supported by the National Key R&D Program of China(Re-sponse-driven Intelligent Enhanced Analysis and Control for Bulk Power System Stability)(2021YFB2400800),Science and Technology Project of SGCC(Response-driven Intelligent Enhanced Analysis and Control for Bulk Power System Stability)(SGSDDK00WJJS2200092). (响应驱动的大电网稳定性智能增强分析与控制技术)

高电压技术

OA北大核心CSTPCD

1003-6520

访问量0
|
下载量0
段落导航相关论文