| 注册
首页|期刊导航|郑州大学学报(医学版)|基于6种机器学习算法的早发性卵巢功能不全影响因素分析

基于6种机器学习算法的早发性卵巢功能不全影响因素分析

陆玉婷 盛正和 黄菲 裴世成 蒙华琳 伍善广

郑州大学学报(医学版)2024,Vol.59Issue(2):246-251,6.
郑州大学学报(医学版)2024,Vol.59Issue(2):246-251,6.DOI:10.13705/j.issn.1671-6825.2023.02.072

基于6种机器学习算法的早发性卵巢功能不全影响因素分析

Analysis of influencing factors of premature ovarian insufficiency based on 6 machine learning algorithms

陆玉婷 1盛正和 2黄菲 3裴世成 3蒙华琳 3伍善广3

作者信息

  • 1. 广西科技大学医学部||柳州市桂中特色药用资源开发重点实验 广西柳州 545005||湖南中医药大学药学院||湖南省中药活性物质筛选工程技术研究中心 长沙 410208
  • 2. 柳州市人民医院中医内科 广西柳州 545005
  • 3. 广西科技大学医学部||柳州市桂中特色药用资源开发重点实验 广西柳州 545005
  • 折叠

摘要

Abstract

Aim:To rank the influencing factors of premature ovarian insufficiency(POI)by machine learning algo-rithm,and find out the factors that have a greater impact on POI.Methods:Firstly,the inclusion and exclusion criteria were established,500 patients with abnormal menstruation were selected,and the corresponding age and occupation differences were analyzed according to the traditional Chinese medicine syndrome type.Then,6 machine learning algorithms including Logistic regression,support vector machine,decision tree,random forest,extreme gradient boosting and K-nearest neighbor were used to predict and classify POI,and the prediction accuracy was compared according to the Matthews correlation coef-ficient and AUC obtained by the algorithm.POI influencing factors were sorted through the accuracy and Gini impurity re-duction in random forest,and the top 5 factors were obtained by the stepwise elimination method.Results:Random forest al-gorithm obtained the maximum value in Matthews correlation coefficient,accuracy and AUC,which were 0.399,0.717 and 0.908,respectively.The influencing factors of POI were uterine or pelvic surgery history,education level,age,weight loss history and smoking history.The Borda count scores for the 5 factors were uterine or pelvic surgery history(2.446),educa-tion level(2.924),age(4.060),weight loss history(5.303),and smoking history(6.429).Conclusions:The performance of random forest algorithm is better than the other 5 algorithms in predicting POI.When the data information of patients is insufficient,doctors could preliminarily intervene patients with irregular menstruation through the indicators of these 5 char-acteristic factors.

关键词

早发性卵巢功能不全/机器学习/特征排序

Key words

premature ovarian insufficiency/machine learning/feature ranking

分类

医药卫生

引用本文复制引用

陆玉婷,盛正和,黄菲,裴世成,蒙华琳,伍善广..基于6种机器学习算法的早发性卵巢功能不全影响因素分析[J].郑州大学学报(医学版),2024,59(2):246-251,6.

基金项目

国家自然科学基金项目(21766003) (21766003)

湖南省研究生科研创新项目(CX20220776) (CX20220776)

郑州大学学报(医学版)

OA北大核心CSTPCD

1671-6825

访问量0
|
下载量0
段落导航相关论文