内蒙古民族大学学报(自然科学版)2024,Vol.39Issue(2):46-53,8.DOI:10.14045/j.cnki.15-1220.2024.02.008
协同拟凸函数的Riemann-Liouville分数阶积分不等式
Riemann-Liouville Fractional Integral Inequalities for Co-ordinated Quasi-convex Functions
摘要
Abstract
Based on Riemann-Liouville fractional integral,the Hermite-Hadamard fractional integral inequali-ties of co-ordinated quasi-convex function are studied.The operation characteristics of Riemann-Liouville fraction-al integral are analyzed and the identity of Riemann-Liouville fractional integral given by SARıKAYA is deeply ex-plored.On the basis of the Riemann-Liouville fractional integral identity,several Hermite-Hadamard fractional inte-gral inequalities of co-ordinated quasi-convex functions are established by using the monotony and co-ordinated quasi-convexity of binary functions and the classical inequalities such as triangle inequality and Hölder inequality.关键词
协同拟凸函数/Hermite-Hadamard不等式/Riemann-Liouville分数阶积分Key words
co-ordinated quasi-convex function/Hermite-Hadamard inequality/Riemann-Liouville fractional integral分类
数理科学引用本文复制引用
郑茜,王淑红..协同拟凸函数的Riemann-Liouville分数阶积分不等式[J].内蒙古民族大学学报(自然科学版),2024,39(2):46-53,8.基金项目
国家自然科学基金项目(12361013) (12361013)
内蒙古自治区直属高校基本科研业务费项目(GXKY22159) (GXKY22159)
内蒙古自治区高等学校科学与技术项目(NJZY20119) (NJZY20119)
内蒙古民族大学博士科研启动基金项目(BS402) (BS402)