|国家科技期刊平台
首页|期刊导航|华中科技大学学报(自然科学版)|基于Resnet和FrFT的水下多目标定位

基于Resnet和FrFT的水下多目标定位OA北大核心CSTPCD

Multi-target localization exploiting Resnet and fractional Fourier transform

中文摘要英文摘要

针对水下多目标定位精度依赖采样间隔的问题,提出了将深度残差网络(ResNet)和分数傅里叶变换(FrFT)相结合的多目标定位算法(MLRF).首先,建立水下多目标定位仿真模型;其次,使用ResNet训练了一种适合多目标定位的网络;然后,对回波进行FrFT得到其频谱图,使用ResNet检测频谱峰值并计算目标个数;最后,设计了一个多目标定位算法来区分不同目标数据,并估计每个目标的位置和速度.通过仿真对比了信噪比(SNR)和锚节点数量对定位的影响.实验结果表明:MLRF算法的定位均方根误差随信噪比和锚节点数量的增加而减小,并在SNR为-5时均方误差在2m以下.该方法受噪声影响较小,能够有效应对水下多目标定位问题,并有助于水下多目标跟踪的研究.

Aiming at the problem that the accuracy of underwater multi-target localization depends on the sampling interval,a multi-target localization algorithm(MLRF)combining the deep residual network(ResNet)and the fractional fourier transform(FrFT)was proposed.Firstly,an simulation model of underwater multi-target localization was built.Secondly,a network suitable for multi-target localization was trained using ResNet.Thirdly,FrFT was performed on the echoes to obtain their spectral maps,and ResNet was used to identify the spectral peaks and calculate the number of targets.Finally,a multi-target localization algorithm was designed to distinguish different target data and estimate the position and velocity of each target.Simulations were conducted to compare the effects of signal-to-noise ratio(SNR)and the number of anchor nodes on localization.The results show that the root mean square error of localization of the MLRF algorithm decreases with the increase of SNR and the number of anchor nodes,and is below 2 m when SNR equals-5.The approach is less affected by noise and can effectively address the problem of underwater multi-target localization as well as contribute to the study of underwater multi-target tracking.

刘树东;马子枫;王燕;张艳

天津城建大学计算机与信息工程学院,天津 300384

电子信息工程

水下定位多目标定位分数傅里叶变换深度残差网络传感器

underwater localizationmulti-target localizationfractional Fourier transformdeep residual networksensor

《华中科技大学学报(自然科学版)》 2024 (003)

127-134 / 8

国家自然科学基金资助项目(61902273).

10.13245/j.hust.240750

评论