| 注册
首页|期刊导航|人民黄河|基于图注意力网络的城市内涝积水预测与研究

基于图注意力网络的城市内涝积水预测与研究

胡昊 孙爽 马鑫 李擎 徐鹏

人民黄河2024,Vol.46Issue(4):43-48,6.
人民黄河2024,Vol.46Issue(4):43-48,6.DOI:10.3969/j.issn.1000-1379.2024.04.007

基于图注意力网络的城市内涝积水预测与研究

Prediction and Research of Urban Waterlogging Based on Graph Attention Network

胡昊 1孙爽 2马鑫 3李擎 4徐鹏5

作者信息

  • 1. 黄河水利职业技术学院,河南 开封 475004||华北水利水电大学,河南 郑州 450045||河南省跨流域区域引调水运行与生态安全工程研究中心,河南 开封 475004
  • 2. 华北水利水电大学,河南 郑州 450045
  • 3. 华北水利水电大学,河南 郑州 450045||中国水利水电科学研究院,北京 100038
  • 4. 中水北方勘测设计研究有限责任公司,天津 300222
  • 5. 黄河水利职业技术学院,河南 开封 475004||河南省跨流域区域引调水运行与生态安全工程研究中心,河南 开封 475004
  • 折叠

摘要

Abstract

The frequent occurrence of extreme heavy rainfall in cities has posed a severe threat to the personal and property safety of residents due to urban flooding.Accurate and efficient prediction of flooding areas within cities plays a crucial role in enhancing urban disaster emer-gency response capabilities.In order to improve the accuracy and intuitiveness of urban flooding area predictions,this article proposed a com-bination prediction model called GATLSTM,based on GAT(Graph Attention Network)and LSTM(Long Short-Time Memory).The GAT was used to extract local spatial features of flooding information,and it enhanced the memory of key information sequences by assigning weights to nodes.Subsequently,LSTM was employed to extract temporal features of flooding area sequences and predicted the flooding areas at inundation points for the next 10 minutes.The model was built and evaluated by using inundation data from a specific point in Kaifeng City.It was compared with LSTM,GAT and GCNLSTM models.The results indicate that the GATLSTM model outperforms the other three models in terms of prediction accuracy.It can accurately forecast flooding areas at inundation points in the short term,providing a scientific basis for flood prevention efforts and emergency response measures.

关键词

积水预测/城市暴雨/图注意力网络/长短期记忆网络

Key words

waterlogging forecast/urban rainstorm/Graph Attention Network/Long Short-Term Memory

分类

信息技术与安全科学

引用本文复制引用

胡昊,孙爽,马鑫,李擎,徐鹏..基于图注意力网络的城市内涝积水预测与研究[J].人民黄河,2024,46(4):43-48,6.

基金项目

河南省重大科技专项(221100320200,231100320100) (221100320200,231100320100)

河南省高等学校青年骨干教师培养计划项目(2019GCJS105) (2019GCJS105)

开封市重点研发专项(22ZDYF007) (22ZDYF007)

人民黄河

OA北大核心CSTPCD

1000-1379

访问量0
|
下载量0
段落导航相关论文