| 注册
首页|期刊导航|生命科学仪器|基于EfficientNet和Grad-CAM++的冠状动脉造影体位识别方法的研究

基于EfficientNet和Grad-CAM++的冠状动脉造影体位识别方法的研究

李劼慧 吴悔 曾研 吴水才

生命科学仪器2023,Vol.21Issue(6):82-88,7.
生命科学仪器2023,Vol.21Issue(6):82-88,7.DOI:10.11967/2023211218

基于EfficientNet和Grad-CAM++的冠状动脉造影体位识别方法的研究

The Classification of the Positions of Coronary Angiography by EfficientNet and Grad-CAM++

李劼慧 1吴悔 2曾研 3吴水才2

作者信息

  • 1. 北京工业大学环境与生命学部,医学电子实验室,北京 100124||国家心血管病中心,国家心血管病重点实验室,中国医学科学院阜外医院 心外科,北京 100037
  • 2. 北京工业大学环境与生命学部,医学电子实验室,北京 100124
  • 3. 上海联影智能医疗科技有限公司,上海 201807
  • 折叠

摘要

Abstract

Objective:Few studies have used artificial intelligence to analyze coronary angiography(CAG),and we propose to achieve automatic recognition of CAG by EfficientNet and Grad-CAM++.Methods:The 86,639 ima-ges were divided into training set,validation set and test set,including all 8 commonly used body positions."Accu-racy"is used as the main index to evaluate the classification effect of the EfficientNet-B1 on each projection posi-tion and Grad-CAM++ is used to explain the learning process of the model.Results:The average accuracy of Ef-ficientNet-B1 on eight imaging positions in the validation set and test set is 90.73%and 89.40%,respectively,which would be higher than VGG-16 and ResNet-18.And Grad-CAM++ shows that EfficientNet-B1 could learn the coronary arteries most comprehensively.conclusion:EfficientNet-B1 can effectively classify the common CAG positions,and the learning effect is better than other network models.

关键词

EfficientNet/Grad-CAM++/冠状动脉造影/体位识别

Key words

EfficientNet/Grad-CAM++/Coronary Angiography/Classification Model

分类

医药卫生

引用本文复制引用

李劼慧,吴悔,曾研,吴水才..基于EfficientNet和Grad-CAM++的冠状动脉造影体位识别方法的研究[J].生命科学仪器,2023,21(6):82-88,7.

生命科学仪器

1671-7929

访问量0
|
下载量0
段落导航相关论文