| 注册
首页|期刊导航|系统管理学报|管理层讨论与分析能预示企业违约吗?

管理层讨论与分析能预示企业违约吗?

沈隆 周颖

系统管理学报2024,Vol.33Issue(2):441-459,19.
系统管理学报2024,Vol.33Issue(2):441-459,19.DOI:10.3969/j.issn1005-2542.2024.02.012

管理层讨论与分析能预示企业违约吗?

Can Management Discussion and Analysis Predict Corporate Defaults?An Empirical Analysis Based on the Chinese Stock Market

沈隆 1周颖1

作者信息

  • 1. 大连理工大学 经济管理学院, 辽宁 大连 116042
  • 折叠

摘要

Abstract

This paper,by employing text mining techniques,analyzes the text of management discussion and analysis(MD&A)content in annual reports of listed companies and constructs an MD&A evaluation system from the perspectives of text similarity,text readability,text tone,and management expectations.By constructing a cost-sensitive gradient boosting decision tree(csGBDT)model,it examines the impact of multidimensional MD&A indicators on corporate default prediction and further analyzes the MD&A indicators that have a significant impact on corporate default status and their marginal effects on the role of default status.It is found that MD&A indicators can be used as an alternative data source to accurately predict the default status of listed companies.MD&A indicators are less effective predictors compared to traditional default prediction variables.MD&A indicators provide additional information content on top of traditional default discriminators.The csGBDT model significantly improves the discriminatory ability of firms(especially for defaulted firms)in the large scale of default prediction data methods,which has obvious advantages.Among the many MD&A indicators that have a significant impact on corporate default are,in order,text similarity compared to the previous year,total vocabulary,sentiment tone 2,total vocabulary/number of sentences,sentiment tone 1 and whether management has issued a performance forecast.This paper extends the research boundary of corporate default prediction from structured data to unstructured textual data,which helps to curb the risk of corporate default due to information asymmetry.

关键词

文本挖掘/管理层讨论与分析/违约预测/代价敏感GBDT/信息不对称

Key words

text mining/management discussion and analysis/default prediction/cost-sensitive gradient boosting decision tree(GBDT)/information asymmetry

分类

管理科学

引用本文复制引用

沈隆,周颖..管理层讨论与分析能预示企业违约吗?[J].系统管理学报,2024,33(2):441-459,19.

基金项目

国家自然科学基金面上项目(72071026,72173096,71971051,71971034,71873103) (72071026,72173096,71971051,71971034,71873103)

国家自然科学基金青年科学基金资助项目(71901055,71903019) (71901055,71903019)

国家自然科学基金地区科学基金资助项目(72161033) (72161033)

国家社会科学基金重大项目(18ZDA095) (18ZDA095)

系统管理学报

OA北大核心CSSCICSTPCD

2097-4558

访问量0
|
下载量0
段落导航相关论文