| 注册
首页|期刊导航|无线电通信技术|智能反射面辅助通信中的信道估计方法

智能反射面辅助通信中的信道估计方法

王兆瑞 刘亮 崔曙光

无线电通信技术2024,Vol.50Issue(2):238-244,7.
无线电通信技术2024,Vol.50Issue(2):238-244,7.DOI:10.3969/j.issn.1003-3114.2024.02.003

智能反射面辅助通信中的信道估计方法

Channel Estimation in Intelligent Reflecting Surface Assisted Communications

王兆瑞 1刘亮 2崔曙光1

作者信息

  • 1. 香港中文大学(深圳)未来智联网络研究院,广东深圳 518172||香港中文大学(深圳)理工学院,广东深圳 518172
  • 2. 香港理工大学电子与信息工程系,香港 999077
  • 折叠

摘要

Abstract

Channel state information is the key to Intelligent Reflecting Surface(IRS)assisted communication system.Because of huge number of IRS elements,overhead for channel estimation and channel overhead is a fundamental issue that limits the performance of IRS-assisted communication.To overcome this issue,this paper will first show a unique property of the channels in IRS-assisted com-munication.Specifically,due to the common channel between Base Station(BS)and IRS,BS-IRS-user cascaded channels of different users are highly correlated to each other.Then,based on above property,this paper will respectively introduce channel estimation meth-ods in uplink communication and channel estimation and feedback methods in downlink.Moreover,the minimum overhead of above methods will be theoretically characterized for demonstrating the gain over conventional channel estimation and feedback methods in IRS-assisted communication systems.

关键词

智能反射面/信道估计/信道反馈

Key words

IRS/channel estimation/channel feedback

分类

信息技术与安全科学

引用本文复制引用

王兆瑞,刘亮,崔曙光..智能反射面辅助通信中的信道估计方法[J].无线电通信技术,2024,50(2):238-244,7.

基金项目

国家自然科学基金(62293482) (62293482)

深港科技合作区河套基础研究(HZQBKCZYZ-2021067) (HZQBKCZYZ-2021067)

国家重点研发计划(2018YFB1800800) (2018YFB1800800)

深圳市杰出人才计划(202002) (202002)

广东省科研项目(2017ZT07X152,2019CX01X104) (2017ZT07X152,2019CX01X104)

广东省未来智联网络重点实验室(2022B1212010001) (2022B1212010001)

深圳市大数据和人工智能重点实验室(ZDSYS201707251409055)National Natural Science Foundation of China(62293482) (ZDSYS201707251409055)

Basic Research Project of Hetao Shenzhen-HK S&T Cooperation Zone(HZQBKCZYZ-2021067) (HZQBKCZYZ-2021067)

National Key R&D Program of China(2018YFB1800800) (2018YFB1800800)

Shenzhen Outstanding Talents Training Fund(202002) (202002)

Guang-dong Research Projects(2017ZT07X152,2019CX01X104) (2017ZT07X152,2019CX01X104)

Guangdong Provincial Key Laboratory of Future Networks of Intelligence(2022B1212010001) (2022B1212010001)

Shenzhen Key Laboratory of Big Data and Artificial Intelligence(ZDSYS201707251409055) (ZDSYS201707251409055)

无线电通信技术

OA北大核心

1003-3114

访问量0
|
下载量0
段落导航相关论文