| 注册
首页|期刊导航|无线电通信技术|基于深度学习的有源智能超表面通信系统

基于深度学习的有源智能超表面通信系统

王馗宇 张翼飞 陈劭斌 周星宇 高镇

无线电通信技术2024,Vol.50Issue(2):357-365,9.
无线电通信技术2024,Vol.50Issue(2):357-365,9.DOI:10.3969/j.issn.1003-3114.2024.02.017

基于深度学习的有源智能超表面通信系统

Active Reconfigurable Intelligent Surface-aided Deep Learning Communication Systems

王馗宇 1张翼飞 1陈劭斌 2周星宇 1高镇3

作者信息

  • 1. 北京理工大学信息与电子学院,北京 100081
  • 2. 北京理工大学信息与电子学院,北京 100081||北京理工大学长三角研究院,浙江嘉兴 314001
  • 3. 北京理工大学信息与电子学院,北京 100081||北京理工大学长三角研究院,浙江嘉兴 314001||北京理工大学前沿交叉科学研究院,北京 100081||北京理工大学前沿技术研究院,山东济南 250307
  • 折叠

摘要

Abstract

Reconfigurable Intelligent Surfaces(RIS)represent one of the most promising physical layer technologies for future wireless communication systems,creating a novel communications paradigm that evolves from adapting to environmental conditions to re-constructing electromagnetic propagation environment.However,due to the"multiplicative fading"effect,RIS can only achieve negligible capacity gains in typical communication scenarios,a fact widely overlooked in many existing studies.To address this,active RIS can effectively counteract the significant path loss of"multiplicative fading"by actively amplifying the reflected signals.In this pa-per,we introduce a communication system aided by an active RIS that employs an End-to-End(E2E)learning strategy.By using a deep learning network,we can jointly optimize the precoding and power allocation ratio at the Base Station(BS)and RIS,as well as the com-biner matrix design at the User Equipment(UE),thus avoiding the high complexity resulting from the alternating optimization inherent in traditional schemes.Specifically,we utilize three Deep Neural Networks(DNN)to implement the precoding matrix and power alloca-tion at BS,and the combiner matrix design on UE,and use a learnable parameter vector to characterize the phase shifts in RIS.Simula-tion results demonstrate that the proposed deep learning-based active RIS transmission scheme outperforms conventional passive RIS and no-RIS schemes in terms of Bit Error Rate(BER).

关键词

有源智能超表面/无线通信网络/深度学习/误比特率

Key words

active RIS/deep learning/BER

分类

信息技术与安全科学

引用本文复制引用

王馗宇,张翼飞,陈劭斌,周星宇,高镇..基于深度学习的有源智能超表面通信系统[J].无线电通信技术,2024,50(2):357-365,9.

基金项目

国家自然科学基金(62071044,U2001210) (62071044,U2001210)

山东省自然科学基金(ZR2022YQ62) (ZR2022YQ62)

北京市科技新星计划National Natural Science Foundation of China(62071044,U2001210) (62071044,U2001210)

Shandong Provincial Natural Science Foundation of China(ZR2022YQ62) (ZR2022YQ62)

Beijing Nova Program ()

无线电通信技术

OA北大核心

1003-3114

访问量0
|
下载量0
段落导航相关论文