| 注册
首页|期刊导航|渔业现代化|基于深度学习的鱼类跟踪技术研究进展

基于深度学习的鱼类跟踪技术研究进展

李鹏龙 张胜茂 沈烈 吴祖立 唐峰华 张衡

渔业现代化2024,Vol.51Issue(2):1-13,13.
渔业现代化2024,Vol.51Issue(2):1-13,13.DOI:10.3969/j.issn.1007-9580.2024.02.001

基于深度学习的鱼类跟踪技术研究进展

Research progress in fish tracking technology based on deep learning

李鹏龙 1张胜茂 2沈烈 1吴祖立 2唐峰华 3张衡3

作者信息

  • 1. 大连海洋大学航海与船舶工程学院,辽宁 大连 116023
  • 2. 大连海洋大学航海与船舶工程学院,辽宁 大连 116023||农业农村部渔业遥感重点实验室,中国水产科学研究院东海水产研究所,上海 200090
  • 3. 农业农村部渔业遥感重点实验室,中国水产科学研究院东海水产研究所,上海 200090
  • 折叠

摘要

Abstract

In recent years,there has been rapid development in intelligent aquaculture and fisheries resource conservation,leading to an increased demand for fish tracking technologies.Traditional fish tracking methods rely heavily on visual observation and tag tracking,which suffer from low efficiency,limited applicability,and low accuracy,hindering their widespread adoption.With the rapid advancement of deep learning in computer vision,deep learning-based fish-tracking technologies can provide accurate,objective,scalable,and automated tracking methods.Firstly,this paper introduces the tracking objects and four deep learning-based fish tracking methods:semantic segmentation,instance segmentation,object detection,and object classification.Secondly,it describes how fish tracking technologies capture fish trajectories,postures,fish quantities,and fish lengths,which are important tracking information for fish targets.Furthermore,the application of deep learning-based fish tracking technologies in fish diseases,fish feeding behavior,and fish health status is discussed.The paper also explores the main challenges of current deep learning-based fish tracking technologies,including low contrast and texture blurring,image color distortion,occlusion,and deformation,along with some corresponding solutions.Finally,the paper concludes and provides an outlook on the future development of deep learning-based fish-tracking technologies.It suggests that deep learning-based fish tracking technologies offer higher accuracy and objectivity,providing more solutions for practical applications in different scenarios.This technology is expected to play a more significant role in aquaculture management,fish scientific research,and marine environment conservation,offering more data and support to relevant fields.

关键词

鱼类跟踪/深度学习/鱼体测量/鱼类行为

Key words

fish tracking/deep learning/fish body measurement/fish behavior

分类

农业科技

引用本文复制引用

李鹏龙,张胜茂,沈烈,吴祖立,唐峰华,张衡..基于深度学习的鱼类跟踪技术研究进展[J].渔业现代化,2024,51(2):1-13,13.

基金项目

国家自然科学基金项目(61936014) (61936014)

崂山实验室专项经费(LSKJ202201804):中国水产科学研究院基本科研业务项目(2020TD82) (LSKJ202201804)

渔业现代化

OA北大核心CSTPCD

1007-9580

访问量0
|
下载量0
段落导航相关论文