一种基于分数阶微积分的CCM Boost变换器准在线无源参数的数字孪生辨识方法OA北大核心CSTPCD
A Quasi-online Digital Twin Identification Method for Passive Parameters of CCM Boost Converters Based on Fractional Calculus
由于具有高性价比、准确性和数字化等优点,数字孪生已成为电力电子变换器故障趋势判断和预知维护的先进技术.针对当前电力电子变换器所建立的数字孪生模型尚未考虑实际电感、电容的分数阶特性的问题,基于分数阶微积分构建电力电子电路的预估-校正数字孪生模型,应用基于粒子群优化(particle swarm optimization,PSO)算法的孪生参数辨识方法对不同分数阶阶次下的电感值(L)和电容值(C)进行辨识,并计算出等效串联电阻.通过与现有方法对比,该方法不仅提高了实际电感和实际电容的辨识精度,还能辨识出不同阶次下与不同 C 下的分数阶参数.最后,搭建不同L和C及分数阶阶次的连续导通模式Boost变换器物理样机,并考虑不同工况条件与不同辨识次数等因素来进行实验验证.实验结果验证了所提模型与方法的有效性.
Due to the advantages of high-cost performance,accuracy and digitization,digital twin has become an advanced technology for fault trending and predictive maintenance of power electronic converters.However,the current digital twin models of power electronic converters fail to consider the fractional characteristics of actual inductors and capacitors,posing a challenge for accurate prediction and fault diagnosis.To address this problem,this paper proposes a prediction-correction digital twin model for power electronic circuits based on fractional calculus.The inductance(L)and capacitance(C)are identified at different fractional orders using a digital twin parameter identification method based on particle swarm optimization(PSO),and the equivalent series resistance(ESR)is calculated.Compared to existing methods,the proposed method not only improves the identification accuracy of the actual inductance and capacitance,but also identifies the fractional parameters at different fractional orders and capacitances.Finally,implementation of continuous conduction mode(CCM)Boost converter with different inductances,capacitances and fractional orders is presented.Besides,different working conditions and identification numbers are considered.The experimental results verify the effectiveness of the proposed model and method.
马铭遥;韩添侠;陈强;王鼎奕;徐君
可再生能源接入电网技术国家地方联合工程实验室(合肥工业大学),安徽省 合肥市 230009阳光电源股份有限公司,安徽省 合肥市 230088
动力与电气工程
数字孪生分数阶Boost变换器参数辨识粒子群优化
digital twinfractional-orderBoost converterparameters identificationparticle swarm optimization(PSO)
《中国电机工程学报》 2024 (006)
新能源汽车宏观运行工况反馈的电驱系统IGBT功率模块热阻抗模型自适应结温估算研究
2340-2349,后插22 / 11
国家自然科学基金项目(51977054).Project Supported by National Natural Science Foundation of China(51977054).
评论