| 注册
首页|期刊导航|国防科技大学学报|数据与知识双驱动的备件需求模糊预测模型

数据与知识双驱动的备件需求模糊预测模型

王小巍 陈砚桥 金家善 魏曙寰

国防科技大学学报2024,Vol.46Issue(2):205-214,10.
国防科技大学学报2024,Vol.46Issue(2):205-214,10.DOI:10.11887/j.cn.202402021

数据与知识双驱动的备件需求模糊预测模型

Spare parts demand fuzzy prediction model driven by data and knowledge

王小巍 1陈砚桥 2金家善 2魏曙寰2

作者信息

  • 1. 海军工程大学动力工程学院,湖北武汉 430033||陆军工程大学军械士官学校,湖北武汉 430075
  • 2. 海军工程大学动力工程学院,湖北武汉 430033
  • 折叠

摘要

Abstract

Aiming at the problem of scarcity of expert knowledge required by knowledge-driven demand forecasting model and insufficient interpretability of data-driven demand forecasting model,a fuzzy prediction model of spare parts demand driven by data and knowledge was proposed.Based on the fuzzy clustering algorithm,the numerical data was clustered into a rule base with simple structure and strong interpretability.The domain expert knowledge was represented as a Mamdani-type rule base by utilizing fuzzy logic.On this basis,a new type of intelligent computing theory—fuzzy network theory was introduced,the two types of rule bases were merged into an initial prediction model.A genetic algorithm was employed to optimize the fuzzy set parameters of the model's rule base to enhance the model's predictive accuracy.Compared with the fuzzy clustering algorithm,the proposed model has advantages in interpretability and accuracy.

关键词

预测模型/备件/模糊网络/遗传算法

Key words

prediction model/spare parts/fuzzy network/genetic algorithm

分类

自科综合

引用本文复制引用

王小巍,陈砚桥,金家善,魏曙寰..数据与知识双驱动的备件需求模糊预测模型[J].国防科技大学学报,2024,46(2):205-214,10.

基金项目

国家部委基金资助项目(LJ20191A020110) (LJ20191A020110)

国防科技大学学报

OA北大核心CSTPCD

1001-2486

访问量0
|
下载量0
段落导航相关论文