| 注册
首页|期刊导航|国防科技大学学报|火箭发动机故障检测的快速增量单分类支持向量机算法

火箭发动机故障检测的快速增量单分类支持向量机算法

张万旋 张箭 卢哲 薛薇 张楠

国防科技大学学报2024,Vol.46Issue(2):115-122,8.
国防科技大学学报2024,Vol.46Issue(2):115-122,8.DOI:10.11887/j.cn.202402012

火箭发动机故障检测的快速增量单分类支持向量机算法

Fast incremental one-class support vector machine algorithm for rocket engine fault detection

张万旋 1张箭 1卢哲 1薛薇 1张楠1

作者信息

  • 1. 北京航天动力研究所,北京 100076
  • 折叠

摘要

Abstract

In order to solve the problem of imbalance between positive and negative samples in liquid rocket engine fault diagnosis,and to enable adaptive fault detection during engine steady working state,a anomaly detection model based on fast incremental one-class support vector machine was established.Feature engineering method was adopted to extract features from sensor-obtained multivariate time series.Through incremental leaning,the one-class support vector machine model was improved and applied to liquid rocket engine anomaly detection.The one-class support vector machine detection model was endowed with adaptability for various engine individuals and multiple working conditions,while increasing computing speed.The analysis results of multiple hot test data show that the model is effective,fast-training and practically valuable.

关键词

单分类支持向量机/特征提取/自适应检测/增量学习/异常检测

Key words

one-class support vector machine/feature extraction/adaptive detection/incremental learning/anomaly detection

引用本文复制引用

张万旋,张箭,卢哲,薛薇,张楠..火箭发动机故障检测的快速增量单分类支持向量机算法[J].国防科技大学学报,2024,46(2):115-122,8.

基金项目

国家自然科学基金资助项目(52232014) (52232014)

国防科技大学学报

OA北大核心CSTPCD

1001-2486

访问量0
|
下载量0
段落导航相关论文