|国家科技期刊平台
首页|期刊导航|高技术通讯|结合先验知识的多智能体博弈对抗研究

结合先验知识的多智能体博弈对抗研究OACSTPCD

Research on multi-agent game confrontation combined with prior knowledge

中文摘要英文摘要

无实时奖励的复杂对抗环境是目前深度强化学习(DRL)领域的研究热点,面对此类环境,纯粹使用深度强化学习算法会导致智能体训练无法快速收敛以及对抗效果不佳等问题.基于此,本文提出了一种基于先验知识与深度强化学习相结合的智能博弈流程框架,设计了数据处理、增强机制以及动作决策3 个模块,通过威胁评估、任务调度和损失比率3 种增强机制来提升智能体在复杂对抗环境下的收敛速度和对抗效果.在数据堡垒(DC)平台上进行仿真,实验结果验证了本文所提出的智能博弈流程框架训练的智能体相较于单纯基于深度强化学习的智能体拥有更快的收敛速度以及更高的胜率.

The complex adversarial environment without real-time reward is the current research hot spot in the field of deep reinforcement learning(DRL).In such environment,the use of deep reinforcement learning algorithm alone in general leads to a lower convergence speed and unsatisfactory performance.In this regard,this paper proposes an intelligent game process framework based on the combination of prior knowledge and deep reinforcement learn-ing,and designs three modules of data processing,enhancement mechanism and action decision-making to improve both the convergence speed and the countermeasure effect under complex confrontation environment through three enhancement mechanisms including threat assessment,task scheduling and loss ratio.The simulation results on the DataCastle(DC)platform show that the agent trained by the proposed intelligent game process framework has a fast convergence speed and higher winning rate than the agent only based on deep reinforcement learning.

袁婷帅;冯宇;李永强

浙江工业大学信息工程学院 杭州 310023

智能博弈先验知识深度强化学习(DRL)威胁评估任务调度

intelligent gameprior knowledgedeep reinforcement learning(DRL)threat estimationtask dispatch

《高技术通讯》 2024 (003)

网络化多目标控制系统分析与设计

256-264 / 9

国家自然科学基金(61973276)资助项目.

10.3772/j.issn.1002-0470.2024.03.004

评论