非高斯波浪作用下深水高墩的非线性随机振动OACSTPCD
Nonlinear Random Vibration of Deep-Water-High-Pier Under Non-Gaussian Wave Action
首先,建立非高斯波浪作用下深水高墩的随机动力学模型,采用泊松白噪声激励模拟非高斯随机波浪过程,利用达朗贝尔原理和伽辽金方法推导深水高墩的运动方程.然后,通过径向基神经网络法求解广义FPK方程,获得系统的瞬态响应概率密度函数.最后,考察不同结构参数对系统响应的影响,并采用蒙特卡罗模拟(MCS)验证理论解.结果表明:理论解与模拟结果吻合良好;浸入比和质量比增加均会放大高墩的响应;采用高斯模型会使结构设计偏于保守.
A random dynamic model is established for deep-water-high-pier under non-Gaussian wave action,the non-Gaussian random wave process is simulated using Poisson white noise excitation,and the motion equa-tion of the deep-water-high-pier is derived by D'Alembert principle and the Galerkin method.The radial basis function neural network method is used to solve the generalized FPK equation,obtaining the transient response probability density function of the system.The effects of different structural parameters on the response of the system are examined,and the theoretical solutions are verified by Monte Carlo simulation(MCS).The results show that the theoretical solutions agree well with the simulation results.The increase of immersion ratio and mass ratio will amplify the response of the high pier.Gaussian model tends to conservative structural designs.
张镕哲;陈林聪
华侨大学土木工程学院,福建厦门 361021
交通运输
深水高墩非高斯随机波浪泊松白噪声径向基神经网络瞬态响应
deep-water-high-piernon-Gaussian random wavePoisson white noiseradial basis function neu-ral networktransient response
《华侨大学学报(自然科学版)》 2024 (002)
233-240 / 8
国家自然科学基金资助项目(12072118,12372029);福建省杰出青年科学基金资助项目(2021J06024)
评论