| 注册
首页|期刊导航|电子学报|基于Q学习的蜂窝车联网边缘计算系统PC-5/Uu接口联合卸载策略

基于Q学习的蜂窝车联网边缘计算系统PC-5/Uu接口联合卸载策略

冯伟杨 林思雨 冯婧涛 李赟 孔繁鹏 艾渤

电子学报2024,Vol.52Issue(2):385-395,11.
电子学报2024,Vol.52Issue(2):385-395,11.DOI:10.12263/DZXB.20220922

基于Q学习的蜂窝车联网边缘计算系统PC-5/Uu接口联合卸载策略

Q-Learning Based Joint PC-5/Uu Offloading Strategy for C-V2X Based Vehicular Edge Computing System

冯伟杨 1林思雨 2冯婧涛 1李赟 3孔繁鹏 4艾渤5

作者信息

  • 1. 北京交通大学电子信息工程学院,北京 100044
  • 2. 北京交通大学电子信息工程学院,北京 100044||轨道交通安全协同创新中心,北京 100044
  • 3. 中国铁路信息科技集团有限公司信息调度中心,北京 100089
  • 4. 中铁信(北京)网络技术研究院有限公司信息技术研究室,北京 100089
  • 5. 北京交通大学电子信息工程学院,北京 100044||智慧高铁系统前沿科学中心,北京 100044
  • 折叠

摘要

Abstract

Intelligent transportation services,such as smart driving,put forward high requirements for latency.When the vehicle itself has insufficient computing power,the vehicle needs the surrounding vehicles and roadside edge computing units to help it complete the task computation.In this paper,based on the existing vehicular edge computing(VEC)offload-ing strategy,considering the differences between the 5G-NR interface and PC-5 interface link of cellular-V2X(C-V2X)sys-tem,we propose a Q-Learning based joint PC-5/Uu interface edge computing offloading strategy.The successful transmis-sion probability of PC-5 link in C-V2X system is modeled,and then the transmission rate characterization method of PC-5 link is deduced.We formulate a constrained Markov decision process(CMDP)to minimize the system latency,where the objective function is the task processing latency in C-V2X system,and constraints are transmission power at task vehicle and energy consumption of computation at vehicles with edge computing unit.By Lagrangian approach,the CMDP prob-lem is transformed into an equivalent min-max non-constrained MDP problem,and Q-Learning is introduced to design the offloading strategy,and then the offloading strategy of C-V2X based VEC system based on Q-Learning is proposed.Simu-lation results show that compared with other baseline schemes,the proposed algorithm can significantly improve the system latency performance by at least 27.3%.

关键词

蜂窝车联网/边缘计算/有约束马尔科夫过程/计算迁移/Q学习

Key words

cellular vehicular-to-everything/edge computing/constrained Markov decision process/computation offloading/Q learning

分类

信息技术与安全科学

引用本文复制引用

冯伟杨,林思雨,冯婧涛,李赟,孔繁鹏,艾渤..基于Q学习的蜂窝车联网边缘计算系统PC-5/Uu接口联合卸载策略[J].电子学报,2024,52(2):385-395,11.

基金项目

国家重点研发计划(No.2022YFB3207400) (No.2022YFB3207400)

国家自然科学基金(No.62221001,No.61971030) (No.62221001,No.61971030)

中国国家铁路集团有限公司科技研究开发计划资助项目(No.P2021S005) National Key Research and Development Program of China(No.2022YFB3207400) (No.P2021S005)

National Natural Science Foundation of China(No.62221001,No.61971030) (No.62221001,No.61971030)

China National Railway Group Co.,Ltd.Science and Technology Research and Development Plan(No.P2021S005) (No.P2021S005)

电子学报

OA北大核心CSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文