| 注册
首页|期刊导航|电子学报|基于时空多头图注意力网络的交通流预测

基于时空多头图注意力网络的交通流预测

梁秀霞 夏曼曼 何月阳 梁涛

电子学报2024,Vol.52Issue(2):500-509,10.
电子学报2024,Vol.52Issue(2):500-509,10.DOI:10.12263/DZXB.20230474

基于时空多头图注意力网络的交通流预测

Traffic Flow Prediction Based on Spatio-Temporal Multi-head Graph Attention Network

梁秀霞 1夏曼曼 1何月阳 1梁涛1

作者信息

  • 1. 河北工业大学人工智能与数据科学学院,天津 300132
  • 折叠

摘要

Abstract

To overcome the drawbacks of current traffic network flow prediction methods,such as the low capability of capturing highly dynamic spatio-temporal correlation and long-term spatial dependence,this paper constructs a novel traf-fic flow prediction model based on multi-head self-attention network.The model takes the data tensor at daily period and weekly period scales as model inputs to express the temporal similarity of traffic flow data,and obtains its static spatio-tem-poral characteristics by encoding the spatio-temporal position embedding of the input data.The main model designs tempo-ral multi-head attention module and spatial multi-head attention module respectively based on multi-head self-attention mechanism for considering the dynamic spatio-temporal characteristics of traffic flow and the long-range spatial depen-dences.The temporal multi-head attention module obtains the local attention using a graph masking matrix and fuses it in-to a multi-head self-attention to extract the dynamic temporal characteristics of traffic flow.The spatial multi-head atten-tion module obtains the local attention and global attention using two graph masking matrices and fuses them into a multi-head self-attention to extract the dynamic spatial characteristics and long-range spatial dependences of road network nodes.Finally,a gated fusion module is designed to adaptively fuse the spatio-temporal correlation characteristics of traf-fic flow data.The effectiveness of the proposed model is verified on three real traffic flow benchmark datasets PEMS04,PEMS07 and PEMS08,and the results show that the three prediction accuracy metrics of the proposed model on the three data sets improved by 4.437%,2.930%,and 4.275%on average compared with the other models with the highest accuracy.

关键词

智能交通/多头图注意力网络/图掩码机制/特征融合/时空数据位置嵌入

Key words

intelligent transportation/multi-head graph attention network/graph masking mechanism/feature fu-sion/spatio-temporal data position embedding

分类

信息技术与安全科学

引用本文复制引用

梁秀霞,夏曼曼,何月阳,梁涛..基于时空多头图注意力网络的交通流预测[J].电子学报,2024,52(2):500-509,10.

基金项目

河北省自然科学基金(No.F2021202022) Natural Science Foundation of Hebei Province(No.F2021202022) (No.F2021202022)

电子学报

OA北大核心CSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文