| 注册
首页|期刊导航|激光技术|机器学习参与山区村落影像点云分类的研究

机器学习参与山区村落影像点云分类的研究

李霞 杨正维 黄俊伟 杨亚复 高莎

激光技术2024,Vol.48Issue(2):288-294,7.
激光技术2024,Vol.48Issue(2):288-294,7.DOI:10.7510/jgjs.issn.1001-3806.2024.02.022

机器学习参与山区村落影像点云分类的研究

Study on image point cloud classification of mountain villages by machine learning

李霞 1杨正维 1黄俊伟 1杨亚复 1高莎2

作者信息

  • 1. 云南省水利水电勘测设计研究院,昆明 650093,中国
  • 2. 昆明理工大学国土资源工程学院,昆明 650500,中国
  • 折叠

摘要

Abstract

In order to use point cloud technology to better obtain surface information,the built-in optical lens of unmanned aerial vehicle(UAV)AA1300 was used to collect image data and build a 2-D digital orthophoto map(DOM)and GS-1350N lens was hung to collect a 3-D light detection and ranging point cloud.DOM classification was realized by three methods,namely,the k-nearest neighbor(KNN)method,support vector machine(SVM)method,and random forest(RF)method.3-D point cloud was classified by the method with high accuracy in quantitative analysis.The comparative analysis of 2-D and 3-D classification mapping was carried out.The results show that,in 2-D DOM classification,kappa coefficients of RF are 3.74%and 2.16%higher,and the overall accuracy is 4.04%and 2.88%higher than those of KNN and SVM,respectively.The classification results of 2-D can be directly linearly transformed into 3-D point clouds,achieving 2-D and 3-D point cloud classification with a mapping accuracy of 94.15%.Under the same conditions,compared to 2-D/3-D point cloud mapping,direct 3-D point cloud classification can present more complete terrain information.This study indicates that the precise classification of 3-D point clouds can be helpful for better obtaining surface information.

关键词

激光技术/图像处理/机器学习/随机森林分类法/高原山区乡村

Key words

laser technique/image processing/machine learning/random forest classification/highland mountain villages

分类

测绘与仪器

引用本文复制引用

李霞,杨正维,黄俊伟,杨亚复,高莎..机器学习参与山区村落影像点云分类的研究[J].激光技术,2024,48(2):288-294,7.

基金项目

国家重点研发计划资助项目(2021YFC3000205-06) (2021YFC3000205-06)

激光技术

OA北大核心CSTPCD

1001-3806

访问量0
|
下载量0
段落导航相关论文