| 注册
首页|期刊导航|测试技术学报|基于毫米波雷达的运动目标点云聚类和扩展算法

基于毫米波雷达的运动目标点云聚类和扩展算法

苏永利 陈平

测试技术学报2024,Vol.38Issue(2):170-178,9.
测试技术学报2024,Vol.38Issue(2):170-178,9.DOI:10.3969/j.issn.1671-7449.2024.02.010

基于毫米波雷达的运动目标点云聚类和扩展算法

Cluster and Expansion Algorithm for Moving Object Point Cloud Based on Millimeter-Wave Radar

苏永利 1陈平1

作者信息

  • 1. 中北大学 信息探测与处理山西省重点实验室,山西 太原 030051
  • 折叠

摘要

Abstract

When using millimeter wave radar for attitude recognition of moving targets,the radar point cloud data has the characteristics of many noisy points and discrete distribution,and the traditional density space-based clustering algorithm for point cloud clustering imaging process,there will be problems such as point cloud classification error between neighboring targets and clustering of the same target point cluster into multiple point clusters.To address the above situation,a motion multi-target neighboring point cloud optimization clustering algorithm is proposed to correct the clustering results using an adaptive distance-weighted fuzzy c-mean algorithm,which improves the accuracy of near-neighbor target point cloud clustering.Meanwhile,a target point cluster expansion aggregation algorithm is proposed,which utilizes Kalman filtering for motion target position prediction,and the multi-frame iterative 3D point cloud dimensions are used as a wavegate to expand the point clusters of the target point cloud to improve the target point cloud integrity.The experimental results show that the proposed method can effectively improve the clustering accuracy.

关键词

毫米波雷达/聚类算法/点簇扩展/卡尔曼滤波/模糊c均值

Key words

millimeter-wave radar/clustering algorithm/point-cluster expansion/Kalman filter/fuzzy c-means

分类

信息技术与安全科学

引用本文复制引用

苏永利,陈平..基于毫米波雷达的运动目标点云聚类和扩展算法[J].测试技术学报,2024,38(2):170-178,9.

基金项目

国家自然科学基金资助项目(62122070) (62122070)

测试技术学报

OACSTPCD

1671-7449

访问量2
|
下载量0
段落导航相关论文