| 注册
首页|期刊导航|舰船电子工程|基于卷积自注意力网络的机械设备故障诊断方法

基于卷积自注意力网络的机械设备故障诊断方法

李子睿 崔晓龙 王超 张文俊 吴军

舰船电子工程2024,Vol.44Issue(1):145-151,7.
舰船电子工程2024,Vol.44Issue(1):145-151,7.DOI:10.3969/j.issn.1672-9730.2024.01.029

基于卷积自注意力网络的机械设备故障诊断方法

Convolutional Self-attention Network-based Fault Diagnosis Method of Mechanical Equipment

李子睿 1崔晓龙 2王超 1张文俊 2吴军1

作者信息

  • 1. 华中科技大学船舶与海洋工程学院 武汉 430074
  • 2. 武汉第二船舶设计研究所 武汉 430205
  • 折叠

摘要

Abstract

Deep learning-based intelligent faults diagnosis methods for mechanical equipment rely on a large amount of la-beled samples.However,it is usually difficult to obtain enough samples in engineering,which makes it difficult for deep learning methods to extract fault features completely and seriously affects the generalization and robustness of fault diagnosis models.There-fore,the paper proposes a fault diagnosis method of mechanical equipment under small samples based on convolutional self-atten-tion network and prior knowledge.The designed convolutional self-attention network can automatically learn sample features and fuse the sample multidimensional features obtained from prior knowledge during the training process,with the aim of reducing the number of samples required for model training and improving the fault diagnosis accuracy of mechanical equipment in the case of small samples.Finally,the proposed method is validated with a hydraulic screw pump dataset.The experimental results show that the proposed method achieves 97.5%fault diagnosis accuracy under small samples,and the performance is better than the current common deep learning methods.

关键词

深度学习/先验知识/自注意力机制/小样本/故障诊断

Key words

deep learning/prior knowledge/self-attention mechanism/small sample/fault diagnosi

分类

机械制造

引用本文复制引用

李子睿,崔晓龙,王超,张文俊,吴军..基于卷积自注意力网络的机械设备故障诊断方法[J].舰船电子工程,2024,44(1):145-151,7.

基金项目

工信部高质量专项重点项目(编号:TC210804R-1) (编号:TC210804R-1)

国家自然科学基金面上项目(编号:51875225) (编号:51875225)

湖北省自然科学基金重点类项目(编号:2021CFA026)资助. (编号:2021CFA026)

舰船电子工程

OACSTPCD

1672-9730

访问量0
|
下载量0
段落导航相关论文