| 注册
首页|期刊导航|极地研究|基于双层聚类信息的极光亚暴自动检测

基于双层聚类信息的极光亚暴自动检测

王平 韩冰 李洁 胡泽骏 尚军亮 葛道辉 袁玉卓

极地研究2024,Vol.36Issue(1):52-69,18.
极地研究2024,Vol.36Issue(1):52-69,18.DOI:10.13679/j.jdyj.20230084

基于双层聚类信息的极光亚暴自动检测

An auroral substorm detection method based on cascaded cluster algorithms

王平 1韩冰 2李洁 2胡泽骏 3尚军亮 1葛道辉 1袁玉卓1

作者信息

  • 1. 曲阜师范大学计算机学院,日照 276800
  • 2. 西安电子科技大学电子工程学院,西安 710071
  • 3. 自然资源部极地科学重点实验室,中国极地研究中心(中国极地研究所),上海 200136
  • 折叠

摘要

Abstract

The breakup of the auroral substorm is closely related to a sudden electromagnetic energy release dur-ing solar wind-magnetosphere coupling process.Understanding the mechanisms of substorm onset and ex-pansion phase clarifies the interactions among interplanetary magnetic field,magnetosphere and ionosphere.Additionally,substorm research is essential to characterize the process of flux transport from the solar to earth,which is significant to the space weather forecast.Auroral images from the ultraviolet imager(UVI)aboard the Polar satellite are the main dataset containing records of auroral substorms,with clear depiction of complete auroral ovals and substorm bulge features.Existing substorm detection algorithms are mostly empirical,relying on manually designed features and rules.In this article,we propose a detection algorithm guided by cascaded cluster algorithms for automatic substorm detection.To avoid using handcraft features,spatiotemporal features of UVI image sequences are extracted using a three-dimensional convolution net-work with subspace clustering.Because of imaging angles differences between frames,UVI images coordi-nates are converted into MLAT-MLT(the magnetic latitude-magnetic local time)coordinate system for pixel alignment.Moreover,image level clustering is applied to reduce the UVI image noise by isolating the sub-storm bulge and discarding unimaged areas.Experimental results indicate that the proposed method achieves higher recall than existing standard methods.

关键词

极光亚暴/双层聚类信息/三维卷积网络/自动检测

Key words

auroral substorm/cascaded clustering/three-dimesional convolution network/automatic detec-tion

引用本文复制引用

王平,韩冰,李洁,胡泽骏,尚军亮,葛道辉,袁玉卓..基于双层聚类信息的极光亚暴自动检测[J].极地研究,2024,36(1):52-69,18.

基金项目

国家自然科学基金面上项目(62076190,41831072)、陕西省重点产业创新链(2022ZDLGY01-11)和山东省自然科学基金青年项目(ZR2023QF068)资助 (62076190,41831072)

极地研究

OA北大核心CSTPCD

1007-7073

访问量0
|
下载量0
段落导航相关论文