|国家科技期刊平台
首页|期刊导航|计算机与数字工程|基于文档顺序与多模态模型的金融票据信息抽取

基于文档顺序与多模态模型的金融票据信息抽取OACSTPCD

Information Extraction of Financial Instrument Based on Document Order and Multimodal Model

中文摘要英文摘要

目前的文档信息抽取方法大多针对简单的文档,在抽取包含背景干扰和结构复杂的金融票据时效果不佳.针对复杂金融票据中实体关系难以正确匹配的问题,提出了顺序重构方法和LayoutLMv3-GRU信息抽取模型.构建背景复杂的金融票据数据集,利用文本、布局和图像三个模态进行信息抽取.利用Layout-Parser工具,设计排序模块,使文本信息按照上下文关系排序,并把空间距离较远且逻辑关系较近的单词进行重新的排列组合.通过结合改进的LayoutLMv3模型与GRU网络,使模型的准确率进一步提升.并在公共数据集FUNSD与自建的复杂金融数据集进行实验.结果表明,该方法的F1值比LayoutLM3模型提升2.37%.尤其在自建的复杂金融数据集上,模型F1值达到了88.36%,验证了该方法在抽取复杂票据信息时的优越性与处理各种文档时的通用性.

The current methods for extracting information from documents mostly work well for simple documents but are not effective for extracting information from complex financial documents that contain background noise and structural complexity.To ad-dress the problem of matching entity relationships in complex financial documents,a sequential reconstruction method and the Lay-outLMv3-GRU information extraction model are proposed.It creates a complex financial document dataset that incorporates text,layout,and image modalities for information extraction.Using the Layout-Parser tool,it designs a sorting module to arrange text in-formation based on contextual relationships and rearrange words that are far apart spatially but closely related logically.By combin-ing the improved LayoutLMv3 model with the GRU network,it further improves the accuracy of the model.It conducts experiments on the public dataset FUNSD and the self-built complex financial dataset.The results show that our method achieves a 2.37%im-provement in F1 score compared to the LayoutLMv3 model.Particularly on the self-built complex financial dataset,the model achieves an F1 score of 88.36%,demonstrating the superiority of the method in extracting information from complex documents and its general applicability in handling various types of documents.

覃俊;林宇亭;刘晶;叶正;刘洲

中南民族大学计算机科学学院 武汉 430074||湖北省制造企业智能管理工程技术研究中心 武汉 430074中南民族大学计算机科学学院 武汉 430074||湖北省制造企业智能管理工程技术研究中心 武汉 430074||农业区块链与智能管理湖北省工程研究中心 武汉 430074中南民族大学计算机科学学院 武汉 430074

数学

金融票据信息抽取多模态LayoutLM3门控神经网络

financial instrumentsinformation extractionmultimodalLayoutLM3GRU

《计算机与数字工程》 2024 (001)

23-27,80 / 6

国家民委中青年英才培养计划(编号:MZR20007);新疆维吾尔自治区区域协同创新专项(科技援疆计划)(编号:2022E02035);湖北省中医药管理局中医药科研项目(编号:ZY2023M064)资助.

10.3969/j.issn.1672-9722.2024.01.004

评论