| 注册
首页|期刊导航|计算机与数字工程|基于密度峰值的标签传播算法

基于密度峰值的标签传播算法

吴卫江 王星豪 潘雪玲 郑艺峰 郑猋

计算机与数字工程2024,Vol.52Issue(1):81-86,6.
计算机与数字工程2024,Vol.52Issue(1):81-86,6.DOI:10.3969/j.issn.1672-9722.2024.01.012

基于密度峰值的标签传播算法

Label Propagation Algorithm Based on Peak Density

吴卫江 1王星豪 1潘雪玲 1郑艺峰 2郑猋1

作者信息

  • 1. 中国石油大学(北京)石油数据挖掘北京市重点实验室 北京 102249||中国石油大学(北京)信息科学与信息工程学院 北京 102249
  • 2. 闽南师范大学数据科学与智能应用福建省高等学校重点实验室 漳州 363000||闽南师范大学计算机学院 漳州 363000
  • 折叠

摘要

Abstract

With the popularization of intelligent technology,high-quality community detection has become a hot topic in so-cial network research.Label propagation algorithm(LPA)has been widely attracted because of its linear time complexity and with-out predefining the objective function and community number.However,in label propagation,LPA is uncertainties and random-ness,which affects the group's accuracy and stability.Therefore,in this paper,a label propagation community detection approach based on peak density is proposed,called DPC-RWL.Firstly,the density peak clustering algorithm is employed to search the core node set of the community.Secondly,the weight between each node and the core set of nodes is calculated,and then the maximum value is selected as its weight.Eventually,the belonging degree function based on label propagation is utilized for propagation.The experiments between the real and LFR artificial benchmark networks show that the proposed algorithm can accurately and efficiently identify community structure.

关键词

密度峰值聚类/标签传播/节点权重/社交网络

Key words

density peak clustering/label propagation/node weigh/social networks

分类

信息技术与安全科学

引用本文复制引用

吴卫江,王星豪,潘雪玲,郑艺峰,郑猋..基于密度峰值的标签传播算法[J].计算机与数字工程,2024,52(1):81-86,6.

基金项目

国家自然科学基金项目(编号:61701213) (编号:61701213)

福建省自然科学基金项目(编号:2019J01748) (编号:2019J01748)

福建省教育厅中青年项目(编号:JAT190392)资助. (编号:JAT190392)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文