| 注册
首页|期刊导航|火力与指挥控制|改进的自适应扩展卡尔曼滤波雷达目标跟踪算法

改进的自适应扩展卡尔曼滤波雷达目标跟踪算法

杨遵立 张衡 吕伟 余娟 张从胜

火力与指挥控制2024,Vol.49Issue(3):19-24,6.
火力与指挥控制2024,Vol.49Issue(3):19-24,6.DOI:10.3969/j.issn.1002-0640.2024.03.003

改进的自适应扩展卡尔曼滤波雷达目标跟踪算法

An Improved Adaptive Extended Kalman Filter Algorithm for Radar Target Tracking

杨遵立 1张衡 1吕伟 1余娟 1张从胜1

作者信息

  • 1. 空军预警学院,武汉 430019
  • 折叠

摘要

Abstract

Kalman filter(KF)algorithm is the most commonly used algorithm in radar target tracking.However the tracking accuracy of KF filtering algorithm decreases when the adaptation of nonlinear motion model and the noise model mismatches.According to these problems,an improved adaptive extended kalman filter(EKF)algorithm for radar target tracking is proposed in the maneuvering target scene,the predicted position information is corrected through the deviation range of the target position.And then the back-propagation(BP)neural network algorithm is used to adapt to the correction of the predicted information results with the EKF algorithm.According to the noise impact of the actual situation,the adjusted update factor is used for the weight processing of the corrected EKF prediction position information,the measured information and the corrected BP-EKF prediction information value.The optimal location prediction information is adaptively selected based on the optimization model.The simulation results show that the filtering accuracy and stability are improved in target tracking.

关键词

机动目标跟踪/扩展卡尔曼滤波/BP神经网络/更新因子/优化模型

Key words

maneuvering target tracking/extended kalman filter/BP neural network/update factor/optimization model

分类

信息技术与安全科学

引用本文复制引用

杨遵立,张衡,吕伟,余娟,张从胜..改进的自适应扩展卡尔曼滤波雷达目标跟踪算法[J].火力与指挥控制,2024,49(3):19-24,6.

基金项目

国家自然科学基金资助项目(61601509) (61601509)

火力与指挥控制

OA北大核心CSTPCD

1002-0640

访问量0
|
下载量0
段落导航相关论文