| 注册
首页|期刊导航|计算机与数字工程|基于嵌入式终端的YOLOv3算法优化实现

基于嵌入式终端的YOLOv3算法优化实现

侯勇 杨争争 薛少辉 翟二宁

计算机与数字工程2024,Vol.52Issue(1):162-168,7.
计算机与数字工程2024,Vol.52Issue(1):162-168,7.DOI:10.3969/j.issn.1672-9722.2024.01.026

基于嵌入式终端的YOLOv3算法优化实现

Optimized Rearealization of YOLOv3 Algorithm Based on Embedded Terminal

侯勇 1杨争争 1薛少辉 1翟二宁1

作者信息

  • 1. 西北机电工程研究所 咸阳 712000
  • 折叠

摘要

Abstract

Image object recognition technology is a hot issue in the field of computer vision research.However,most of the cur-rent advanced object detection algorithms are based on server-side training and deployment.Under the background of today's mobile Internet era,they cannot be truly applied.At the same time,taking into account the needs of localized chips and software develop-ment environment,the YOLOv3 detection model is optimized and trained,and the model is deployed based on the embedded termi-nal,the Baidu EdgeBoard Edge AI Computing Box.Results of experiment fully show that the optimized YOLOv3-MobileNetv1 mod-el has a good detection and recognition effect on pedestrians,vehicles,airplanes and other types of objects.

关键词

嵌入式终端/目标检测/深度学习/轻量化模型

Key words

embedded terminal/object detection/deep learning/lightweight model

分类

天文与地球科学

引用本文复制引用

侯勇,杨争争,薛少辉,翟二宁..基于嵌入式终端的YOLOv3算法优化实现[J].计算机与数字工程,2024,52(1):162-168,7.

基金项目

装备预研领域基金项目(编号:61403120205)资助. (编号:61403120205)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文