| 注册
首页|期刊导航|计算机应用研究|基于多传感信息融合的语义词袋SLAM优化算法

基于多传感信息融合的语义词袋SLAM优化算法

袁鹏 谷志茹 刘中伟 焦龙飞 毛麒云

计算机应用研究2024,Vol.41Issue(4):1247-1251,5.
计算机应用研究2024,Vol.41Issue(4):1247-1251,5.DOI:10.19734/j.issn.1001-3695.2023.08.0356

基于多传感信息融合的语义词袋SLAM优化算法

Multi-sensor information fusion SLAM based on semantic word bags

袁鹏 1谷志茹 1刘中伟 1焦龙飞 1毛麒云1

作者信息

  • 1. 湖南工业大学轨道交通学院,湖南株洲 412008
  • 折叠

摘要

Abstract

This paper proposed an algorithm known as MSW-SLAM(multi-sensor information fusion SLAM based on semantic word bags)to address the issue of inaccurate LiDAR odometry position and pose calculations in the mapping of outdoor large-scale environments by mobile robots,resulting in a decrease in the accuracy of the simultaneous localization and mapping(SLAM)algorithm.This algorithm incorporated raw observation data from LiDAR using a visual inertial system and conducts joint nonlinear optimization of measurements from the inertial measurement unit(IMU),visual features,and laser point cloud features using sliding windows,the algorithm leveraged the complementary semantic word bag characteristics of vision and Li-DAR for closed-loop optimization,further enhancing the global positioning and mapping accuracy of the multi-sensor fusion SLAM system.Experimental results demonstrate that,compared to traditional tightly coupled binocular vision-inertial odometry and LiDAR odometry positioning,the MSW-SLAM algorithm can effectively detect closed-loop information in trajectories and achieve high-precision global pose optimization.The point cloud map after closed-loop detection exhibits excellent resolution and global consistency.

关键词

同时定位与实时建图/语义词袋/位姿估计

Key words

simultaneous positioning and real-time mapping/semantic word bag/pose estimation

分类

信息技术与安全科学

引用本文复制引用

袁鹏,谷志茹,刘中伟,焦龙飞,毛麒云..基于多传感信息融合的语义词袋SLAM优化算法[J].计算机应用研究,2024,41(4):1247-1251,5.

基金项目

湖南省自然科学基金资助项目(2022JJ50005) (2022JJ50005)

湖南省研究生科研创新项目(QL20230216) (QL20230216)

国家自然科学基金区域联合基金重点项目(U23A20385) (U23A20385)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文