| 注册
首页|期刊导航|农机化研究|基于深度学习卷积神经网络的桑果成熟度检测研究

基于深度学习卷积神经网络的桑果成熟度检测研究

张瑞英

农机化研究2024,Vol.46Issue(5):26-30,5.
农机化研究2024,Vol.46Issue(5):26-30,5.

基于深度学习卷积神经网络的桑果成熟度检测研究

Research on Mulberry Maturity Detection Based on Deep Learning and Convolution Neural Network

张瑞英1

作者信息

  • 1. 北京信息职业技术学院,北京 100018
  • 折叠

摘要

Abstract

The purpose of mulberry maturity detection is to automatically determine the maturity of mulberry fruit accord-ing to the input mulberry image,so as to facilitate farmers to understand the maturity of orchard crops.It first introduces the target detection algorithm based on deep learning convolution neural network,and then builds a mulberry detection model based on Faster R-CNN.Through the training and optimization of model parameters in Matlab,it realized the ma-turity detection of mulberry.The experimental results show it has a high accuracy for the mulberry maturity detection sys-tem based on image processing and convolution neural network of mulberry maturity detection,which has certain practical significance.

关键词

桑果/成熟度/卷积神经网络/Faster R-CNN

Key words

mulberry/maturity/convolution neural network/Faster R-CNN

分类

农业科技

引用本文复制引用

张瑞英..基于深度学习卷积神经网络的桑果成熟度检测研究[J].农机化研究,2024,46(5):26-30,5.

基金项目

北京市特色高水平职业院校建设项目(XN02202113) (XN02202113)

农机化研究

OA北大核心

1003-188X

访问量0
|
下载量0
段落导航相关论文