|国家科技期刊平台
首页|期刊导航|四川大学学报(自然科学版)|基于多任务多模态学习的谣言检测框架

基于多任务多模态学习的谣言检测框架OA北大核心CSTPCD

Rumor detection framework based on multitask multi-modal learning

中文摘要英文摘要

谣言检测是对社交网络上传播的信息内容进行真实性鉴别的任务.一些研究表明融合多模态信息有助于谣言检测,而现有多模谣言检测方法具有以下问题:(1)只是将处于不同表示空间的单模态特征简单拼接形成多模态表示,没有考虑多模态之间的关系,难以提高模型的预测性能和泛化能力.(2)缺乏对社交网络数据组成结构的细致考虑,只能处理由文本-图像对的社交网络数据,无法处理由多幅图像组成的数据,且当其中一种模态(图像或文本)缺失时模型无法进行预测.针对上述问题,本文提出了一种多任务多模态谣言检测框架(MMRDF),该框架由3个子网络组成:文本子网络、视觉子网络和融合子网络,通过从单模态数据中提取浅层至深层的单模特征表示,在不同的子空间中产生特征图,丰富模态内特征,并通过复合卷积结构融合生成联合多模态表示,以获得更好的预测性能.同时该框架可以灵活地处理所有类型的推文(纯文本、纯图像、文本-图像对和多图像文本),并且没有引入造成额外时间延迟的传播结构、响应内容等数据作为输入,可以在推文发布后立即应用于谣言检测,减少辟谣的时间延迟.在两个真实数据集上的实验结果表明,所提框架明显优于目前最先进的方法,准确率上的提升分别为7.3%和2.9%,并通过消融实验证明了各个模块的有效性.

Rumor detection is the task of identifying the veracity of the information on social networks.Previ-ous studies have shown that fusing multimodal information can be helpful to rumor detection.However,these approaches have some limitations:(1)simply concatenated unimodal features without considering inter-modality relations,resulting in limited improvement in prediction performance and generalization ability.(2)did not carefully consider the composition structure of social network data,assuming it was only composed of image-text pairs and unable to handle multi-image data or missing modalities.To address these issues,we proposed a novel framework called multitask multimodal rumor detection framework(MMRDF),which con-sists of three sub-networks that generate joint multimodal representation by merging features at different lev-els and enriching intra-modal features with feature maps from different subspaces.Moreover,the joint multi-modal representation is generated by a composite convolutional fusion structure to achieve better prediction performance.MMRDF is flexible and capable of handling various types of tweets,including pure text,pure image,image-text pairs,and text with multi-images.Additionally,the MMRDF does not require extra time-delaying data such as propagation structures and response content,allowing for immediate application to ru-mor detection and reducing the time delay in debunking rumors.Experimental results on two real-world datas-ets demonstrate that our framework outperforms the state-of-the-art methods,achieving an accuracy improve-ment of 7.3%and 2.9%.Ablation experiments further validate the effectiveness of each module in the pro-posed framework.

蒋方婷;梁刚

四川大学网络空间安全学院, 成都 610065

计算机与自动化

谣言检测多模态分析表示学习多任务学习神经网络

Rumor detectionMulti-modal analysisRepresentation learningMultitask learningNeural Networks

《四川大学学报(自然科学版)》 2024 (002)

94-105 / 12

自然科学基金联合项目(62162057);四川省科技厅重点研发项目(2022YFG0182);教育部地方项目(2020CDZG-18,2021CDLZ-12,2021CDZG-11);达州科技局计划项目(21ZDYF0009);四川省社会科学重点研究基地——系统科学与企业发展研究中心规划项目

10.19907/j.0490-6756.2024.023004

评论