| 注册
首页|期刊导航|农业大数据学报|基于改进的YOLOv3农作物目标检测算法

基于改进的YOLOv3农作物目标检测算法

郭蓓 王贝贝 张志红 吴苏 李鹏 胡莉婷

农业大数据学报2024,Vol.6Issue(1):40-47,8.
农业大数据学报2024,Vol.6Issue(1):40-47,8.DOI:10.19788/j.issn.2096-6369.000006

基于改进的YOLOv3农作物目标检测算法

Improved YOLOv3 Crop Target Detection Algorithm

郭蓓 1王贝贝 2张志红 3吴苏 2李鹏 2胡莉婷3

作者信息

  • 1. 中国气象局·河南省农业气象保障与应用技术重点开放实验室,郑州 450003||河南中原光电测控技术有限公司,郑州 450047
  • 2. 河南中原光电测控技术有限公司,郑州 450047
  • 3. 中国气象局·河南省农业气象保障与应用技术重点开放实验室,郑州 450003
  • 折叠

摘要

Abstract

When detecting targets in crop images,the detection accuracy of target detection algorithms can be seriously affected due to factors such as dense crop planting and poor imaging quality.In order to optimize the detection performance of crop object detection in YOLOv3,an improved algorithm based on YOLOv3 is proposed.Firstly,the backbone feature extraction network of YOLOv3 is optimized by utilizing the downsampling feature maps outputted by the original network to detect targets,and residual units are added on the basis of the residual blocks in the original network to detect the position information of small crop objects.Moreover,a Gaussian decay function is introduced to attenuate highly overlapping crop candidate boxes in the image,effectively suppressing redundant boxes and reducing false negative rate.Furthermore,the regression loss function is optimized by using CIOU Loss,making the final object localization more accurate during the object detection process.To evaluate the improved YOLOv3 algorithm,a comparative experiment is conducted on a real-world dataset of maize crop images,comparing it with the original YOLOv3 algorithm and the Faster R-CNN algorithm.The results demonstrate that the improved YOLOv3 algorithm can effectively detect small crop targets,exhibiting significantly improved mean average precision and detection speed.

关键词

目标检测/YOLOv3算法/特征提取网络/损失函数

Key words

target detection/YOLOv3 algorithm/feature extraction network/loss function

引用本文复制引用

郭蓓,王贝贝,张志红,吴苏,李鹏,胡莉婷..基于改进的YOLOv3农作物目标检测算法[J].农业大数据学报,2024,6(1):40-47,8.

基金项目

中国气象局·河南省农业气象保障与应用技术重点开放实验室研究基金(AMF202203)资助 (AMF202203)

农业大数据学报

OACSTPCD

2096-6369

访问量0
|
下载量0
段落导航相关论文