| 注册
首页|期刊导航|数据采集与处理|基于语义分割和融合残差U-Net的单视光学遥感影像三维重建方法

基于语义分割和融合残差U-Net的单视光学遥感影像三维重建方法

黄桦 朱宇昕 章历 陈志达 张乙志 王博

数据采集与处理2024,Vol.39Issue(2):348-360,13.
数据采集与处理2024,Vol.39Issue(2):348-360,13.DOI:10.16337/j.1004-9037.2024.02.008

基于语义分割和融合残差U-Net的单视光学遥感影像三维重建方法

Three-Dimensional Reconstruction Method for Single-View Optical Remote Sensing Images Based on Semantic Segmentation and Residual U-Net Fusion

黄桦 1朱宇昕 2章历 3陈志达 4张乙志 1王博2

作者信息

  • 1. 浙江省测绘科学技术研究院,杭州 310012
  • 2. 南京航空航天大学航天学院,南京 211106
  • 3. 浙江艺佳地理信息技术有限公司,杭州 311700
  • 4. 绍兴市上虞区自然资源监测中心,绍兴 312365
  • 折叠

摘要

Abstract

Three-dimensional(3D)reconstruction from single-view remote sensing images is an unsolvable problem,which often requires a lot of manual experience to supplement the missing information to construct a complete 3D model.To solve this problem,a 3D reconstruction method of single-view remote sensing image based on semantic segmentation and fusion residual U-Net is proposed.The method includes two stages:Semantic segmentation and height estimation of single-view remote sensing images.In the semantic segmentation stage,U-Net is used to determine the property of ground objects.On this basis,U-Net is improved to estimate the height of remote sensing image.The anchoring height regression is combined with semantic features to improve the reconstruction accuracy.Specifically,in order to improve U-Net,the feature extraction capability of encoder is enhanced by embedding residual blocks with different numbers and channels,and the decoder output layer is modified to adapt to the height regression task,so as to achieve pixel-to-pixel prediction of digital surface model(DSM)height values of remote sensing images.The results of root mean square error(RMSE)of 2.751 m and mean absolute error(MAE)of 1.446 m are obtained on the published US3D data set,and the reconstructed results are superior to those of other networks,confirming that the method can realize 3D estimation based on single-view remote sensing images and can reconstruct the distribution structure of ground objects.

关键词

语义分割/深度残差学习/融合残差U-Net/单视三维重建

Key words

semantic segmentation/deep residual learning/residual U-Net fusion/single-view 3D reconstruction

分类

信息技术与安全科学

引用本文复制引用

黄桦,朱宇昕,章历,陈志达,张乙志,王博..基于语义分割和融合残差U-Net的单视光学遥感影像三维重建方法[J].数据采集与处理,2024,39(2):348-360,13.

基金项目

浙江省基础公益研究计划(LTGS23D010003). (LTGS23D010003)

数据采集与处理

OA北大核心CSTPCD

1004-9037

访问量0
|
下载量0
段落导航相关论文