| 注册
首页|期刊导航|地球与行星物理论评(中英文)|基于深度学习的火星12小时全球尘埃分布预测

基于深度学习的火星12小时全球尘埃分布预测

何泽锋 张杰 盛峥 唐满

地球与行星物理论评(中英文)2024,Vol.55Issue(4):479-492,14.
地球与行星物理论评(中英文)2024,Vol.55Issue(4):479-492,14.DOI:10.19975/j.dqyxx.2023-057

基于深度学习的火星12小时全球尘埃分布预测

Deep learning-based 12-hour global dust distribution forecasting on Martian

何泽锋 1张杰 1盛峥 1唐满1

作者信息

  • 1. 国防科技大学气象海洋学院,长沙 410000
  • 折叠

摘要

Abstract

Martian dust storms have a profound impact on atmospheric structure,pose multiple risks to Mars landers,and greatly affect the accuracy of sounders.This makes the accurate short-term prediction of dust storms extremely important for future Mars exploration missions.However,traditional statistical analyses fail to accu-rately capture the variation patterns of dust.Here,we show that the ConvGRU-Seq2Seq model can fully utilize the data to achieve a 12-h forecast of global dust.We found that considering multiple interconnected meteorological elements,particularly the wind field,and accounting for seasonal variations can enhance forecast accuracy.The ad-dition of the Seq2Seq structure reduced the mean squared error(MSE)by 85.3%and the mean absolute error(MAE)by 75.07%,compared with the original ConvGRU model.Among the six models compared,the ConvGRU-Seq2Seq model exhibited the best test performance,with MSE,MAE,and R2 values of 8.73×10-4,13.48×10-3,and 98.12×10-2,respectively.The model exhibited stable and reliable prediction performance and a more concentrated and accurate spatial distribution of errors.We achieved a rapidly changing dust activity forecast within 12 h with<10%mean absolute percentage error(MAPE).This study presents the first deep learning model for short-term forecasting of Martian dust storms,providing a reference for future Mars exploration missions.

关键词

大气/火星尘埃/深度学习/预测

Key words

atmosphere/Mars dust/deep learning/prediction

分类

天文与地球科学

引用本文复制引用

何泽锋,张杰,盛峥,唐满..基于深度学习的火星12小时全球尘埃分布预测[J].地球与行星物理论评(中英文),2024,55(4):479-492,14.

基金项目

This research was supported by the National Natural Science Foundation of China(Grant No.42275060)and National Natural Sci-ence Foundation for Young Scientists of China(Grant No.2021JJ10048) (Grant No.42275060)

地球与行星物理论评(中英文)

2097-1893

访问量0
|
下载量0
段落导航相关论文