| 注册
首页|期刊导航|无线电工程|基于改进YOLOv8的无人机航拍图像目标检测算法

基于改进YOLOv8的无人机航拍图像目标检测算法

程换新 乔庆元 骆晓玲 于沙家

无线电工程2024,Vol.54Issue(4):871-881,11.
无线电工程2024,Vol.54Issue(4):871-881,11.DOI:10.3969/j.issn.1003-3106.2024.04.010

基于改进YOLOv8的无人机航拍图像目标检测算法

Object Detection Algorithm for UAV Aerial Image Based on Improved YOLOv8

程换新 1乔庆元 1骆晓玲 2于沙家1

作者信息

  • 1. 青岛科技大学 自动化与电子工程学院,山东青岛 266061
  • 2. 青岛科技大学机电工程学院,山东青岛 266061
  • 折叠

摘要

Abstract

To solve the problem that the existing UAV aerial image target detection algorithm has low detection accuracy and complex model,an improved YOLOv8 target detection algorithm is proposed.Multi-scale attention EMA is introduced into the backbone network to capture detailed information to improve the feature extraction ability and C2f module is improved to reduce the calculation amount of the model.The lightweight Bi-YOLOv8 feature pyramid network structure is proposed to improve the neck of YOLOv8,the multi-scale feature fusion ability of the model is enhanced,and the detection accuracy of the network for small targets is improved.WIoU Loss is used to optimize the original network loss function,and a dynamic non-monotonic focusing mechanism is introduced to improve the generalization ability of the model.Experiments on UAV aerial image data set VisDrone2019 show that the mAP50 of the proposed algorithm is 40.7%,which is 1.5%higher than YOLOv8s,and the number of parameters is reduced by 42%.The accuracy and speed are improved compared with other advanced target detection algorithms,which proves the effectiveness and advanced nature of the proposed algorithm.

关键词

航拍图像/小目标检测/YOLOv8/Bi-YOLOv8/轻量化

Key words

aerial images/small object detection/YOLOv8/Bi-YOLOv8/lightweight

分类

信息技术与安全科学

引用本文复制引用

程换新,乔庆元,骆晓玲,于沙家..基于改进YOLOv8的无人机航拍图像目标检测算法[J].无线电工程,2024,54(4):871-881,11.

基金项目

国家自然科学基金(62273192)National Natural Science Foundation of China(62273192) (62273192)

无线电工程

1003-3106

访问量4
|
下载量0
段落导航相关论文