| 注册
首页|期刊导航|无线电工程|基于改进YOLOv7的无人机图像目标检测算法

基于改进YOLOv7的无人机图像目标检测算法

梁秀满 贾梓涵 于海峰 刘振东

无线电工程2024,Vol.54Issue(4):937-946,10.
无线电工程2024,Vol.54Issue(4):937-946,10.DOI:10.3969/j.issn.1003-3106.2024.04.017

基于改进YOLOv7的无人机图像目标检测算法

UAV Image Object Detection Algorithm Based on Improved YOLOv7

梁秀满 1贾梓涵 1于海峰 1刘振东1

作者信息

  • 1. 华北理工大学电气工程学院,河北 唐山 063210
  • 折叠

摘要

Abstract

To solve the problems of small targets,mutual occlusion,and less feature information in UAV images,which lead to low detection accuracy,an improved YOLOv7 UAV image target detection algorithm is proposed.CoordConv is added to the neck and detection head,which can better sense the position information of the target in the feature map;the P2 detection layer is added to reduce the loss of small target features and improve the detection ability of small targets;multiple information flow fusion attention-Spatial and Channel Attention Mechanism(SC A)is proposed to dynamically adjusts the focus on spatial information flow and semantic information flow to obtain more comprehensive feature information to improve the ability to capture targets;the loss function is replaced with SIoU to speed up model convergence.A comparison experiment is conducted on the public dataset VisDrone2019.The mAP50 value of the proposed algorithm is 4%higher than that of YOLOv7,reaching 52.4%,and the FPS is 37.The ablation experiments verify that each module improves the detection accuracy.Experiments show that the improved algorithm can better detect objects in UAV images.

关键词

无人机/小目标检测/多信息流融合注意力机制/YOLOv7/损失函数

Key words

UAV/small target detection/multi-information flow fusion attention mechanism/YOLOv7/loss function

分类

信息技术与安全科学

引用本文复制引用

梁秀满,贾梓涵,于海峰,刘振东..基于改进YOLOv7的无人机图像目标检测算法[J].无线电工程,2024,54(4):937-946,10.

基金项目

河北省自然科学基金(F2018209289)Hebei Provincial Natural Science Foundation of China(F2018209289) (F2018209289)

无线电工程

1003-3106

访问量0
|
下载量0
段落导航相关论文