|国家科技期刊平台
首页|期刊导航|无线电工程|基于小波变换和DNN算法的GNSS-IR 土壤湿度反演

基于小波变换和DNN算法的GNSS-IR 土壤湿度反演OA

GNSS-IR Soil Moisture Retrieval Based on Wavelet Transform and Deep Neural Network

中文摘要英文摘要

针对如何有效提高全球导航卫星系统干涉反射(Global Navigation Satellite System Interferometric Reflectometry,GNSS-IR)土壤湿度反演的精度,提出了一种结合数字信号分析和深度神经网络(Deep Neural Network,DNN)的土壤湿度反演方法.该方法利用小波变换(Wavelet Transform,WT)方法代替传统的多项式拟合法降噪,从而有效提高反射信号提取精度;利用希尔伯特变换(Hilbert Transform,HT)获得观测信号的平均瞬时属性,即每个观测周期的平均瞬时振幅、平均瞬时频率和平均瞬时相位;利用DNN算法建立上述3个属性与土壤湿度的非线性映射关系,从而实现土壤湿度的反演.利用2015和2016年在美国科罗拉多州查塔菲县附近的PBO P037测站收集的GNSS观测数据进行模型建立和评估分析.结果表明,该方法的均方根误差(Root Mean Square Error,RMSE)为0.009 5 cm3/cm3,相对于传统线性回归模型具有很大的改善,有效提高了 GNSS-IR 土壤湿度反演的精度.

To effectively improve the accuracy of Global Navigation Satellite System Interferometric Reflectometry(GNSS-IR)soil moisture retrieval,a soil moisture retrieval method combining digital signal analysis and Deep Neural Network(DNN)is proposed.This method utilizes Wavelet Transform(WT)instead of the traditional polynomial fitting method to reduce noise,thereby effectively enhancing the extraction accuracy of the reflected signal.The Hilbert Transform(HT)is employed to obtain the average instantaneous properties of the observation signal,including the average instantaneous amplitude,average instantaneous frequency,and average instantaneous phase for each observation period.The Deep Neural Network(DNN)algorithm is used to establish a nonlinear mapping relationship between these three attributes and soil moisture,enabling the inversion of soil moisture.The model is established and evaluated using GNSS observation data collected in 2015 and 2016 at the PBO P037 station near Chattaffy County,Colorado,USA.The results demonstrate a Root Mean Square Error(RMSE)of 0.009 5 cm3/cm3 for this method,which represents a significant improvement compared to the traditional linear regression model.Consequently,the proposed approach effectively enhances the accuracy of GNSS-IR soil moisture retrieval.

张杰;刘小芳;姚蕊

四川轻化工大学计算机科学与工程学院,四川宜宾 644002

测绘与仪器

全球导航卫星系统干涉反射土壤湿度反演小波变换深度神经网络

GNSS-IRsoil moisture inversionWTDNN

《无线电工程》 2024 (004)

954-961 / 8

高层次创新人才培养专项资助(B12402005);四川轻化工大学人才引进项目(2021RC16);教育部高等教育司产学合作协同育人项目(202101038016)Funded by High Level Innovative Talents Training Special Project(B12402005);Sichuan University of Science and Engi-neering for Talent Introduction Project(2021RC16);University-Industry Cooperation Collaborative Education Project of the Higher Education De-partment of the Ministry of Education(202101038016)

10.3969/j.issn.1003-3106.2024.04.019

评论