基于BSO-BP改进动态帧时隙算法的密集环境下RFID标签读写优化方法OACSTPCD
Optimization method for RFID tag reading and writing in dense environments based on BSO-BP improved dynamic frame time slot algorithm
无线射频识别技术作为物联网的关键技术,正在不断发展并广泛应用于我国制造业领域.为了解决大量无线射频识别标签读写时相互竞争信道而产生的数据碰撞现象,需要对标签数量进行准确估计.文章在传统动态帧时隙算法的基础上,利用天牛群搜索算法寻找BP神经网络的最优初始权值和阈值,并将最优值应用到BP神经网络的参数设定中,实现了对标签数量的准确估计.通过实验和企业实际使用RFID绑定电源线的生产效果证明,与传统的动态帧时隙算法相比,所提出的改进算法既保证了读取的准确性,又缩短了读取时间,有效地提高了系统的效率.
Wireless radio frequency identification technology,as a key technology of the Internet of Things,is constantly developing and widely applied in the manufacturing industry of China.In order to solve the data collision phenomenon caused by the competition of channels during the reading and writing of a large number of wireless radio frequency identification tags,accurate estimation of the number of tags is required.On the basis of the traditional dynamic frame time slot algorithm,the Tian Niu swarm search algorithm is used to find the optimal initial weight and threshold of the BP neural network,and the optimal value is used to the parameter set of BP neural network,achieving accurate estimation of the number of labels.The production effect of RFID(radio frequency identification)bound power cords by experiments and actual use by enterprises proves that,in combination with the traditional dynamic frame time slot algorithm,the proposed improved algorithm can not only ensure the accuracy of reading,but also shorten the reading time,effectively improving the efficiency of the system.
王思源;洪涛;姜逸璇
中国计量大学 质量与安全工程学院,浙江 杭州 310018
电子信息工程
无线射频识别技术动态帧时隙密集环境BSO算法BP神经网络天牛群搜索算法
RFIDdynamic frame time slotsdense environmentBSO algorithmBP neural networkTian Niu Qun search algorithm
《现代电子技术》 2024 (008)
61-67 / 7
浙江省基础公益研究计划项目(LGG22E050011)
评论