首页|期刊导航|现代信息科技|基于结构特征的药物靶点亲和力预测

基于结构特征的药物靶点亲和力预测OA

Prediction of Drug Target Binding Affinity Based on Structural Features

中文摘要英文摘要

预测药物与其靶向蛋白的结合亲和力是研发新药的关键步骤.传统的湿实验耗时长,成本高.随着人工智能技术的快速发展,在药物筛选阶段应用深度学习的技术可以大幅度提升研发效率.针对上述问题,提出一种基于卷积神经网络预测药物靶点亲和力的方法.将蛋白质和小分子的结构特征分别转换成对应的三维矩阵,送入对应的三维卷积神经网络中进行训练,然后再通过若干层全连接神经网络提取特征值,得到最终的亲和力值.实验结果表明,该模型可有效地预测药物靶点亲和力,具有良好的应用前景.

Predicting the binding affinity between drugs and their target proteins is a key steps in developing new drugs.Traditional wet experiments are time-consuming and expensive.With the rapid development of artificial intelligence technology,the application of Deep Learning technology in the drug screening phase has the potential to significantly enhance research and development efficiency.A method for predicting drug target binding affinity based on Convolutiona…查看全部>>

邵允昶;张媛媛;江明建

青岛理工大学,山东 青岛 266520青岛理工大学,山东 青岛 266520青岛理工大学,山东 青岛 266520

计算机与自动化

人工智能深度学习卷积神经网络蛋白质结构药物靶点亲和力预测

Artificial IntelligenceDeep LearningConvolutional Neural Networksprotein structureprediction of drug target binding affinity

《现代信息科技》 2024 (5)

162-166,5

10.19850/j.cnki.2096-4706.2024.05.035

评论

您当前未登录!去登录点击加载更多...