超、卸载作用下考虑接头影响的盾构管片承载性能研究OA北大核心CSTPCD
Study on the load-bearing performance of shield tunnel segments considering joint influence under overload and unloading conditions
地表堆载或侧方开挖卸载易诱发盾构隧道病害,影响施工及运营安全.现有研究难以综合定量评价超、卸载作用下盾构隧道的承载性能,其数值模型大多仅考虑环向或纵向接头的单一影响,将接头等效为切向及法向弹簧,难以考虑接头的非线性,或是直接将螺栓嵌入混凝土中,忽略螺栓预紧力的承载贡献,接头精细化程度不足.为此,建立考虑环、纵向接头的盾构隧道精细化数值模型,对顶部超载和侧方卸载工况作用下结构的受力特性和承载性能展开分析,获取不同工况下结构的承载极限及相应的变形阈值,并利用足尺试验验证了数值模型的可行性.研究结果表明:本文数值计算结果与足尺试验吻合良好,二者椭圆度变形差异小于10%;计算精度较仅考虑环向接头影响时提高约6%,较未考虑接头影响时(均质圆环)提高约30%,可实现盾构管片结构变形过程及损伤演化的动态模拟;盾构隧道有一定的富余承载力,当隧道上方超载达138 kPa或侧方压力卸载达26.3%时,结构相应的椭圆度分别为27.4‰和22.1‰,结构达到正常服役的极限状态,当隧道超出正常服役极限状态后,接头塑性铰逐步成型,结构软化并逐渐失效,接缝张开及管片错台也急剧上升;隧道侧方压力卸载达26.3%后,其接缝张开及管片错台曲线不再光滑,侧压卸载超36.8%后,曲线的起伏波动更为明显,隧道侧方卸载过程中结构受力响应更为复杂、敏感.
Surface loading or lateral excavation unloading can easily induce diseases in shield tunnels, posing risks to construction and operational safety. Existing research struggles to comprehensively and quantitatively evaluate the load-bearing capacity of shield tunnels under overload and unloading condi-tions. Most numerical models are limited, considering only the singular influence of circumferential or longitudinal joints. These models often simplify joints as tangential and normal springs, inadequately addressing joint nonlinearity, or embed bolts directly into concrete, overlooking the load-bearing con-tribution of bolt preload, thus lacking in joint detail. This study develops a refined numerical model of shield tunnel segments, incorporating both circumferential and longitudinal joints, to analyze the stress characteristics and load-bearing performance under conditions of top overload and lateral unloading. It determines the load-bearing limits and corresponding deformation thresholds under various conditions, validated by full-scale testing. The results show that good agreement between numerical calculations and full-scale tests, with ellipticity deformation discrepancies under 10%. The model's calculation ac-curacy improves by approximately 6% over models considering only circumferential joint effects, and by about 30% over homogeneous ring models that neglect joint effects, enabling dynamic simulation of structural deformation and damage evolution in shield tunnel segments. The study reveals the shield tunnel's surplus load-bearing capacity. With tunnel overloads reaching 138 kPa or lateral pressure un-loading at 26.3%, the structure's ellipticities are 27.4‰ and 22.1‰, respectively, marking the limit state of normal service. Exceeding this limit, the joint's plastic hinge formation leads to structural soft-ening and eventual failure, with a significant increase in joint opening and segment misalignment. Be-yond 26.3% lateral unloading, the curve of joint opening and segment dislocation becomes irregular, and fluctuations become markedly pronounced beyond 36.8% unloading, indicating a more complex and sensitive structural stress response during tunnel lateral unloading.
胡梦豪;石钰锋;蒋亚龙;黄展军;张荣锋;顾大均
华东交通大学土木建筑学院 南昌 330013华东交通大学土木建筑学院 南昌 330013||华东交通大学江西建筑设计院有限公司,南昌 330013南昌轨道交通集团有限公司,南昌 330199中国电建集团华东勘测设计研究院有限公司,杭州 311122中国铁路南昌局集团有限公司,南昌 330009
交通运输
盾构管片数值模拟超载卸载足尺试验接头
shield tunnel segmentnumerical simulationoverloadunloadingfull-scale testjoint
《北京交通大学学报》 2024 (001)
20-31 / 12
国家自然科学基金(42177162)National Natural Science Foundation of China(42177162)
评论