|国家科技期刊平台
首页|期刊导航|重庆邮电大学学报(自然科学版)|低复杂度的大规模MIMO分布式信道估计

低复杂度的大规模MIMO分布式信道估计OACSTPCD

Low complexity distributed channel estimation for massive MIMO

中文摘要英文摘要

针对大规模多输入多输出(multiple-input multiple-output,MIMO)系统传统信道矩阵获取方式导频开销大、计算复杂度高的问题,提出了一种低复杂度的二阶段分布式信道估计方案.该方案的初始阶段在基站侧采用传统压缩感知算法恢复信道矩阵,第 2 阶段在用户端利用信道的时间相关性,将大规模MIMO的角度域信道分解为密集部分和稀疏部分,并分别估计以实现连续信道追踪.稀疏部分信道通过所提的分布式自适应弱匹配追踪(dis-tributed adaptive weak matching pursuit,DAWMP)算法,利用子信道的联合稀疏性进行多维重建.相比于线性最小均方误差(linear minimum mean square error,LMMSE)算法,所提方案的信道分解策略有效减少了在用户端进行信道估计的计算复杂度.仿真结果表明,所提算法与经典压缩感知信道估计算法相比,计算复杂度降低了约 33%,算法性能提升了约 0.5 dB.

The traditional channel estimation algorithm in massive multiple-input multiple-output(MIMO)system requires a large pilot overhead and has high computation complexity.To solve this problem,we propose a two-stage distributed chan-nel estimation scheme with low complexity.In the initial stage of the scheme,the traditional compressed sensing algorithm is used to recover the channel matrix at the base station side.In the second stage,the proposed scheme realizes continuous channel tracking by using the temporal correlation of the channel on the user side.The massive MIMO angle domain channel is divided into dense part and sparse part.The distributed adaptive weak matching pursuit(DAWMP)algorithm proposed in this paper is used for multi-dimensional reconstruction of sparse channel by utilizing the joint sparsity of sub-channels.Compared with the linear minimum mean square error(LMMSE)algorithm,the channel decomposition strategy effectively reduces the computational complexity of channel estimation on the user side.At the same time,simulation results show that compared with the classical compressed sensing channel estimation algorithm,the computational complexity of the proposed algorithm is reduced by about 33%,and the performance of the algorithm is improved by about 0.5 dB.

王华华;龚自豪;窦思钰

重庆邮电大学 通信与信息工程学院,重庆 400065

电子信息工程

大规模多输入输出(MIMO)分布式信道估计信道追踪分布式压缩感知联合稀疏性

massive multiple-input multiple-output(MIMO)distributed channel estimationchannel trackingdistributed compressed sensingjoint sparsity

《重庆邮电大学学报(自然科学版)》 2024 (002)

199-208 / 10

重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0454) The Natural Science Foundation of Chongqing of General Program(cstc2021jcyj-msxmX0454)

10.3979/j.issn.1673-825X.202304150106

评论