基于信道特征生成对抗网络的信道建模方法OACSTPCD
Channel modeling method based on channel feature generative adversarial networks
基于生成对抗网络(generative adversarial networks,GAN)的数据生成特性,提出一种用于信道特征生成的GAN改进模型,即信道特征生成对抗网络(channel feature generative adversarial networks,CFGAN).采用完全无监督学习信道特征方式,利用线性编码向量与生成信道之间的互信息关系和变分互信息最大化原理,实现编码向量与信道特征对应;采用实测室内电力线信道数据集训练CFGAN模型,训练完成的CFGAN能够学习到不同信道特征分布.仿真表明,在-80~-10 dB大动态衰减范围内,CFGAN可根据学习到的信道特征生成具有明显区别的 4类信道模型,并且生成信道和实测信道的信道特征差异小于 2%.
This paper proposes an improved model of generative adversarial networks(GAN)tailored for channel feature generation,named as channel feature generative adversarial networks(CFGAN).Using a completely unsupervised learning channel feature method,the model utilizes the mutual information relationship between the linear coding vector and the gen-erated channel,alongside variational mutual information maximization principles,to establish a correspondence between the coding vector and channel characteristics.The CFGAN model is trained using a dataset of measured indoor power line chan-nel data.The trained CFGAN can learn different channel feature distributions.Simulation shows that in a large dynamic range channel with an attenuation amplitude of-80~-10 dB,CFGAN can generate four types of channel models with signifi-cant differences based on the learned channel characteristics,and the difference in channel characteristics between the gen-erated channel and the measured channel is less than 2%.
刘何鑫;段红光;黄凤翔
重庆邮电大学 通信与信息工程学院,重庆 400065
电子信息工程
生成对抗网络信道建模互信息
generative adversarial networkschannel modelingmutual information
《重庆邮电大学学报(自然科学版)》 2024 (002)
209-219 / 11
重庆市基础与前沿研究计划项目(cstc2019jcyj-msxmX0079) The Chongqing Research Program of Basic Research and Frontier Technology(cstc2019jcyj-msxmX0079)
评论