|国家科技期刊平台
首页|期刊导航|重庆邮电大学学报(自然科学版)|基于接收信号强度预测的自适应垂直切换算法

基于接收信号强度预测的自适应垂直切换算法OACSTPCD

Adaptive vertical handoff algorithm based on received signal strength prediction

中文摘要英文摘要

城市部署的超密集异构无线网络中车辆终端的运动状态和业务类型差异巨大,针对不同运动状态和业务类型的终端并发接入导致的频繁切换和拥塞问题,提出一种基于接收信号强度预测的自适应垂直切换算法.在切换触发阶段使用长短时记忆神经网络预测接收信号强度,在信道链路质量恶化之前提前触发切换,在网络选择阶段综合考虑网络参数以及终端在不同运动状态和业务类型下的接入偏好,并选出综合效益值最高的网络作为切换目标网络.仿真结果表明,该算法能更好地适应终端运动状态和业务类型的变化,能降低不必要的切换次数和网络拥塞度.

In the urban scenario,movement states and service types of vehicle terminals in ultra-dense heterogeneous wire-less networks vary greatly.To address the frequent handoff and congestion problems caused by concurrent access of termi-nals with different movement states and service types,this paper proposes an adaptive vertical handoff algorithm based on received signal strength prediction.Firstly,the received signal strength is predicted using a long short-term memory neural network in the handoff trigger phase.Secondly,network parameters and access preferences of terminals under different movement states and service types are considered in the network selection phase.The network with the highest comprehen-sive benefit value is selected as the target network.Finally,simulation results show that the algorithm can adapt to changes in terminal movement states and service types,and reduce the number of unnecessary handoffs and network congestion.

马彬;刘爽;谢显中

重庆邮电大学 计算机科学与技术学院,重庆 400065||重庆邮电大学 重庆市计算机网络与通信技术重点实验室,重庆 400065重庆邮电大学 重庆市计算机网络与通信技术重点实验室,重庆 400065

电子信息工程

超密集异构无线网络循环神经网络支持向量机自适应算法频繁切换

ultra-dense heterogeneous wireless networksrecurrent neural networksupport vector machineadaptive algo-rithmfrequent handoff

《重庆邮电大学学报(自然科学版)》 2024 (002)

229-241 / 13

重庆市教委科学技术研究重大项目(KJZD-M201900602);重庆市教委科学技术研究重点项目(KJZD-M201800603)The Major Project of Science and Technology Research of Chongqing Education Commission(KJZD-M201900602);The Key Project of Science and Technology Research of Chongqing Education Commission(KJZD-M201800603)M201800603)

10.3979/j.issn.1673-825X.202211250340

评论