| 注册
首页|期刊导航|重庆邮电大学学报(自然科学版)|基于域矩阵因子分解机的点击通过率预估增强网络

基于域矩阵因子分解机的点击通过率预估增强网络

陈乔松 黄泽锰 胡静 王进 邓欣

重庆邮电大学学报(自然科学版)2024,Vol.36Issue(2):383-392,10.
重庆邮电大学学报(自然科学版)2024,Vol.36Issue(2):383-392,10.DOI:10.3979/j.issn.1673-825X.202303020056

基于域矩阵因子分解机的点击通过率预估增强网络

Enhanced network for CTR prediction based on field-matrixed factorization machines

陈乔松 1黄泽锰 1胡静 1王进 1邓欣1

作者信息

  • 1. 重庆邮电大学 计算机科学与技术学院,重庆 400065||重庆邮电大学 数据工程与可视计算重点实验室,重庆 400065
  • 折叠

摘要

Abstract

Effective feature interaction plays a vital role in the accuracy of click-through-rate(CTR)estimation in industri-al recommendation systems.Previous CTR prediction models with a parallel structure learn low-order and high-order interac-tions of features by connecting independent shallow models and deep models in parallel.However,these models have prob-lems such as low accuracy of shallow models,failure to consider the multi-semantic problem of feature interaction,exces-sive parameters,and over-generalization of deep models.Based on the above problems,this paper proposes an enhanced network for CTR prediction based on field-matrixed factorization machines.It introduces domain matrix to optimize the inter-action in shallow models,improves the efficiency of computation,and adds a bridge module between the DNN layers of deep models to enhance the memory ability of original features after each high-order interaction.The results of shallow and deep models are added and normalized to obtain the predicted value.The model has undergone extensive experiments on Criteo,KKBox,Frappe,and MovieLens datasets,demonstrating excellent predictive capabilities.

关键词

点击通过率/域矩阵因子分解机/桥接模块/特征交互

Key words

click-through rate/field-matrixed factorization machine/bridging module/feature interaction

分类

信息技术与安全科学

引用本文复制引用

陈乔松,黄泽锰,胡静,王进,邓欣..基于域矩阵因子分解机的点击通过率预估增强网络[J].重庆邮电大学学报(自然科学版),2024,36(2):383-392,10.

基金项目

国家重点研发项目(2022YFE0101000) The National Key Research and Development Program of China(2022YFE0101000) (2022YFE0101000)

重庆邮电大学学报(自然科学版)

OA北大核心CSTPCD

1673-825X

访问量0
|
下载量0
段落导航相关论文