| 注册
首页|期刊导航|电测与仪表|基于深度强化学习的微电网在线优化

基于深度强化学习的微电网在线优化

余宏晖 林声宏 朱建全 陈浩悟

电测与仪表2024,Vol.61Issue(4):9-14,6.
电测与仪表2024,Vol.61Issue(4):9-14,6.DOI:10.19753/j.issn1001-1390.2024.04.002

基于深度强化学习的微电网在线优化

On-line optimization of micro-grid based on deep reinforcement learning

余宏晖 1林声宏 1朱建全 1陈浩悟1

作者信息

  • 1. 华南理工大学电力学院,广州 510640
  • 折叠

摘要

Abstract

In view of the micro-grid random optimization scheduling problem,this paper proposes an online optimization algorithm of micro-grid based on deep reinforcement learning.The deep neural network is used to approximate the state-action value function,and the action of the battery is discretized as the output of the neural network.And then,the non-linear programming is used to solve the remaining decision variables and calculate the immediate return,and obtain the optimal strategy through the Q-learning algorithm.In order to make the neural network adapt to the randomness of wind,photovoltaic and load power,according to the wind,photovoltaic and load power prediction curves and their prediction er-rors,Monte Carlo sampling is used to generate multiple sets of training curves to train the neural network.After the train-ing is completed,the weights are saved.According to the real-time input status of the micro-grid,the neural network can output the actions of the battery in real time so as to realize the online optimal dispatching of the micro-grid.Compared with day-ahead optimization results under different fluctuations of wind power,photovoltaic and load power,the effective-ness and superiority of this algorithm in online optimization of micro-grid are verified.

关键词

微电网调度/Q学习/在线优化/蒙特卡洛/深度强化学习

Key words

micro-grid dispatching/Q-learning/online optimization/Monte Carlo/deep reinforcement learning

分类

信息技术与安全科学

引用本文复制引用

余宏晖,林声宏,朱建全,陈浩悟..基于深度强化学习的微电网在线优化[J].电测与仪表,2024,61(4):9-14,6.

基金项目

广东省自然科学基金资助项目(2018A0303131001) (2018A0303131001)

国家自然科学基金资助项目(51977081) (51977081)

电测与仪表

OA北大核心CSTPCD

1001-1390

访问量0
|
下载量0
段落导航相关论文