| 注册
首页|期刊导航|电器与能效管理技术|基于CNN-LSTM的永磁同步风力发电机转子偏心早期故障诊断

基于CNN-LSTM的永磁同步风力发电机转子偏心早期故障诊断

谢彤彤 刘颖明 王晓东 高兴

电器与能效管理技术Issue(3):1-6,6.
电器与能效管理技术Issue(3):1-6,6.DOI:10.16628/j.cnki.2095-8188.2024.03.001

基于CNN-LSTM的永磁同步风力发电机转子偏心早期故障诊断

Early Fault Diagnosis of Permanent Magnet Synchronous Wind Turbine Rotor Eccentricity Based on CNN-LSTM

谢彤彤 1刘颖明 1王晓东 1高兴1

作者信息

  • 1. 沈阳工业大学电气工程学院,辽宁沈阳 110870
  • 折叠

摘要

Abstract

Research is conducted on the characteristics and diagnostic methods of early dynamic eccentricity and early static eccentricity faults in the rotor of permanent magnet synchronous wind turbines.The early dynamic eccentricity and early static eccentricity models for permanent magnet synchronous wind turbines are established using Ansys,and a fault diagnosis and classification method based on CNN-LSTM is proposed.By analyzing the three-phase current and Welch power spectrum data of the stator of a permanent magnet synchronous wind turbine generator,the generator's current status can be judged whether it is normal dynamic eccentricity trend or normal static eccentricity trend.Then,the different fault levels are classified using no-load electromotive force.Finally,the fault diagnosis and classification tasks in the neural network model are completed.The proposed method greatly reduces equipment maintenance costs and can accurately and quickly identify early rotor eccentricity faults.

关键词

卷积神经网络/长短期记忆网络/故障诊断/特征提取

Key words

convolutional neural network(CNN)/long short term memory(LSTM)network/fault diagnosis/feature extraction

分类

信息技术与安全科学

引用本文复制引用

谢彤彤,刘颖明,王晓东,高兴..基于CNN-LSTM的永磁同步风力发电机转子偏心早期故障诊断[J].电器与能效管理技术,2024,(3):1-6,6.

基金项目

国家自然科学基金(52007124) (52007124)

辽宁省揭榜挂帅科技攻关专项(2021JH1/10400009) (2021JH1/10400009)

电器与能效管理技术

2095-8188

访问量0
|
下载量0
段落导航相关论文