|国家科技期刊平台
首页|期刊导航|电器与能效管理技术|基于CNN-LSTM的永磁同步风力发电机转子偏心早期故障诊断

基于CNN-LSTM的永磁同步风力发电机转子偏心早期故障诊断OA

Early Fault Diagnosis of Permanent Magnet Synchronous Wind Turbine Rotor Eccentricity Based on CNN-LSTM

中文摘要英文摘要

对永磁同步风力发电机转子早期动偏心和早期静偏心故障的特点和诊断方法进行研究,通过Ansys建立永磁同步风力发电机的早期动偏心和早期静偏心模型,提出一种基于CNN-LSTM的故障诊断和分类方法.通过对永磁同步风力发电机定子三相电流及其Welch功率谱数据的分析,判断是否为正常的动偏心趋势和静偏心趋势;然后通过空载电动势对不同故障程度进行分类.最后,在神经网络模型中完成故障诊断和分类任务.所提方法大大降低了设备维修成本,可准确快速地识别转子早期偏心故障.

Research is conducted on the characteristics and diagnostic methods of early dynamic eccentricity and early static eccentricity faults in the rotor of permanent magnet synchronous wind turbines.The early dynamic eccentricity and early static eccentricity models for permanent magnet synchronous wind turbines are established using Ansys,and a fault diagnosis and classification method based on CNN-LSTM is proposed.By analyzing the three-phase current and Welch power spectrum data of the stator of a permanent magnet synchronous wind turbine generator,the generator's current status can be judged whether it is normal dynamic eccentricity trend or normal static eccentricity trend.Then,the different fault levels are classified using no-load electromotive force.Finally,the fault diagnosis and classification tasks in the neural network model are completed.The proposed method greatly reduces equipment maintenance costs and can accurately and quickly identify early rotor eccentricity faults.

谢彤彤;刘颖明;王晓东;高兴

沈阳工业大学电气工程学院,辽宁沈阳 110870

动力与电气工程

卷积神经网络长短期记忆网络故障诊断特征提取

convolutional neural network(CNN)long short term memory(LSTM)networkfault diagnosisfeature extraction

《电器与能效管理技术》 2024 (003)

1-6 / 6

国家自然科学基金(52007124);辽宁省揭榜挂帅科技攻关专项(2021JH1/10400009)

10.16628/j.cnki.2095-8188.2024.03.001

评论