| 注册
首页|期刊导航|电力系统自动化|面向多场景辅助服务的大规模电动汽车聚合可调度容量建模

面向多场景辅助服务的大规模电动汽车聚合可调度容量建模

王杨洋 茆美琴 杨铖 周堃 杜燕 Nikos D. HATZIARGYRIOU

电力系统自动化2024,Vol.48Issue(7):103-115,13.
电力系统自动化2024,Vol.48Issue(7):103-115,13.DOI:10.7500/AEPS20230627012

面向多场景辅助服务的大规模电动汽车聚合可调度容量建模

Aggregated and Schedulable Capacity Modeling of Large-scale Electric Vehicles for Multi-scenario Auxiliary Services

王杨洋 1茆美琴 1杨铖 2周堃 3杜燕 1Nikos D. HATZIARGYRIOU4

作者信息

  • 1. 教育部光伏系统工程研究中心,合肥工业大学,安徽省合肥市 230009
  • 2. 国网安徽省电力有限公司,安徽省合肥市 230000
  • 3. 国网安徽省电动汽车服务有限公司,安徽省合肥市 230000
  • 4. 雅典国立理工大学,雅典 15780,希腊
  • 折叠

摘要

Abstract

The aggregation schedulable capacity(ASC)of large-scale electric vehicles(EVs)is one of the important technical indicators for virtual power plant containing EVs to participate in multi-level and multi-scenario power balance auxiliary services.However,the existing ASC model of EVs is difficult to adapt to the interactive scenario between large-scale EVs and provincial power dispatching center.Therefore,from the new perspective of multi-level and multi-scenario regulation for peak-shaving,frequency regutalion,and voltage regulation of power systems,this paper proposes a dual-layer clustering modeling method for ASC of EVs based on data-driven and machine learning.By constructing the individual schedulable capacity model of generalized EV-charging pile energy storage unit,this method combines the density space-based clustering algorithm and the improved self-organizing map deep clustering algorithm,which effectively integrates the time distribution of electric quantity of EVs and the spatial distribution characteristics of charging piles,and constructs the ASC model for multi-scenario regulation of peak shaving,frequency regulation and voltage regulation.The proposed method is verified by actual charging records in a province of China,and various charging profiles such as"morning type","noon type"and"evening type"are obtained.The self-aggregation of generalized energy storage system with different spatial and temporal distributions of EVs is realized,and the potential evaluation of provincial-level EVs participating in different auxiliary services of power grid is realized.The data foundation is laid for the prediction of ASC.

关键词

电动汽车/辅助服务/数据驱动/广义储能系统/电动汽车与电网互动/可调度容量/聚合模型/双层聚类

Key words

electric vehicle/auxiliary service/data-driven/generalized energy storage system/vehicle to grid(V2G)/schedulable capacity/aggregation model/two-level clustering

引用本文复制引用

王杨洋,茆美琴,杨铖,周堃,杜燕,Nikos D. HATZIARGYRIOU..面向多场景辅助服务的大规模电动汽车聚合可调度容量建模[J].电力系统自动化,2024,48(7):103-115,13.

基金项目

安徽省自然科学基金资助项目(2108085UD02) (2108085UD02)

国家自然科学基金资助项目(51577047) (51577047)

高等学校学科创新引智计划("111"计划)资助项目(BP0719039). This work is supported by Anhui Provincial Natural Science Foundation(No.2108085UD02),National Natural Science Foundation of China(No.51577047)and Program of Introducing Talents of Discipline to Universities("111"Program)(No.BP0719039). ("111"计划)

电力系统自动化

OA北大核心CSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文