|国家科技期刊平台
首页|期刊导航|电力系统自动化|融合路网-电网信息的电动汽车充放电行为引导与调控策略

融合路网-电网信息的电动汽车充放电行为引导与调控策略OA北大核心CSTPCD

Guidance and Regulation Strategy for Charging and Discharging Behaviors of Electric Vehicles Based on Fusion of Road Network and Power Grid Information

中文摘要英文摘要

在智慧城市理念快速发展的背景下,电动汽车(EV)无引导的出行与无序的充放电行为影响着电力-交通耦合网络的安全高效运行.针对此问题,提出一种融合路网-电网信息的EV充放电行为引导与调控两阶段优化策略.首先,分析电力-交通耦合网络的交互影响因素和方式,提出EV充放电出行路径引导和调控架构;其次,提出融合路网-电网信息的EV充放电出行决策电价动态更新策略,并建立计及用户时间-经济成本的EV充放电出行路径决策优化模型;然后,兼顾多方主体利益,建立EV充放电调控模型;最后,仿真结果表明,所提策略能够综合考虑路网和电网实时运行状态,充分挖掘EV在路径引导与充放电调控过程中的可调潜力,实现系统协调运行和多方共赢.

In the context of the rapid development of smart city concepts,the unguided traveling and disorderly charging and discharging behaviors of electric vehicles(EVs)are affecting the safe and efficient operation of the power-transportation coupling network.To address this problem,this paper proposes a two-phase optimal guidance and regulation strategy for charging and discharging behaviors of EVs based on the fusion of road network and power grid information.Firstly,the interactive factors and modes of the power-transportation coupling network are analyzed,and the guidance and regulation architecture of EV charging and discharging travel path are proposed.Secondly,a dynamic updating strategy for the electricity price of EV charging and discharging travel decision is proposed based on the fusion of road network and power grid information,and an optimization model for EV charging and discharging travel path decision-making is established considering the user time-economic cost.Then,the EV charging and discharging regulation model is established considering the interests of multiple stakeholders.Finally,the simulation results show that the proposed strategy can comprehensively consider the real-time operation state of the road network and the power grid,fully tap into the adjustable potential in the process of path guidance and charging and discharging regulation of EVs,and realize the coordinated operation of the system and multi-party win-win.

玉少华;杜兆斌;陈丽丹;陈南星;李家乐

华南理工大学电力学院,广东省广州市 510641广州航海学院轮机工程学院,广东省广州市 510725

电动汽车路网电力-交通耦合网络优化引导与调控动态电价多利益主体行为决策

electric vehicleroad networkpower-transportation coupling networkoptimal guidance and regulationdynamic electricity pricemultiple stakeholdersbehavior decision

《电力系统自动化》 2024 (007)

169-180 / 12

广东省重点领域研发计划资助项目(2019B111109001). This work is supported by Key Area R&D Program of Guangdong Province(No.2019B111109001).

10.7500/AEPS20230731003

评论