基于声发射的钢桥面板焊接气孔缺陷在线识别OA北大核心CSTPCD
Online detection of welding pore defects in steel bridge decks based on acoustic emission
为实现正交异性钢桥面板机器人智能化焊接过程中缺陷的在线监测,提出了一种基于快速傅里叶变换和支持向量机的气孔缺陷声发射识别方法.通过开展机器人焊接实验,揭示了钢桥面板焊接及缺陷产生过程的声发射特征.无损伤与气孔缺陷2种工况信号的幅值、振铃计数、峰值频率和中心频率等参数重叠交叉严重、相关性不显著,而气孔缺陷信号的傅里叶频谱存在更多高频能量分布,因此以频谱为输入建立2种工况的径向基核支持向量机模型.实验结果表明,与朴素贝叶斯、随机森林和线性核支持向量机模型相比,径向基核支持向量机模型拥有更高的正确率(95.4%)和召回率(94.3%),能够用于焊接过程气孔缺陷的在线识别,具有较强的鲁棒性和实用性.
To achieve online monitoring of defects in the robot intelligent welding process of orthogonal aniso-tropic steel bridge decks,a pore defect acoustic emission detection method was proposed based on fast Fourier transform(FFT)and support vector machine(SVM).The acoustic emission characteristics of the welding and defect generation processes in steel bridge decks were explored by conducting robotic welding experi-ments.The parameters of acoustic emission signals,such as amplitude,counts,peak frequency,and center frequency,in the non-damage and pore defect cases behave with significant overlaps and low correlations.However,the Fourier spectrums of signals from the pore defect case exhibit more high-frequency energy distri-butions.Therefore,taking spectrums as the input,a radial basis kernel SVM model was established for classif-ying the two cases.Experimental results demonstrate that the proposed method outperforms other machine learning models,including naive Bayes,random forest,and linear kernel SVM models,in terms of accuracy(95.4%)and recall(94.3%).It can be used for online detection of pore defects in the welding process,ex-hibiting strong robustness and practicality.
李丹;陈燕秋;王浩;聂佳豪;刘洋;王建国
东南大学混凝土及预应力混凝土结构教育部重点实验室,南京 211189||东南大学土木工程学院,南京 211189中铁山桥(南通)有限公司,南通 226532
土木建筑
钢桥面板焊接缺陷在线识别声发射频谱分析支持向量机
steel bridge deckswelding defectsonline detectionacoustic emissionspectral analysissup-port vector machine(SVM)
《东南大学学报(自然科学版)》 2024 (002)
285-293 / 9
国家自然科学基金资助项目(52378290,52338011)、中央高校基本科研业务费专项资金资助项目(RF1028623228)、江苏省科技成果转化专项资金资助项目(BA2023059).
评论