| 注册
首页|期刊导航|福建电脑|ResNet50模型在肺炎识别分类中的应用

ResNet50模型在肺炎识别分类中的应用

彭航 邓锡泽 牛玉霞 刘洋

福建电脑2024,Vol.40Issue(4):9-13,5.
福建电脑2024,Vol.40Issue(4):9-13,5.DOI:10.16707/j.cnki.fjpc.2024.04.003

ResNet50模型在肺炎识别分类中的应用

Application of ResNet50 in Pneumonia Identification and Classification

彭航 1邓锡泽 1牛玉霞 1刘洋1

作者信息

  • 1. 北方民族大学计算机科学与工程学院 银川 750021||北方民族大学图像图形智能处理国家民委重点实验室 银川 750021
  • 折叠

摘要

Abstract

In order to improve the recognition and classification efficiency of pneumonia in medical images,this paper uses the ResNet50 model to recognize and classify COVID images,Lung-Opacity images,Normal images,and Pneumonia images.By comparing the differences in accuracy,F1 value,recall,accuracy,and specificity evaluation indicators between ResNet50 and AlexNet and GoogLeNet for pneumonia image classification,it is demonstrated that ResNet50 has better image recognition and classification performance than other models.

关键词

肺炎/图像识别/残差网络模型/肺炎分类

Key words

Pneumonia/Image Recognition/ResNet50 Model/Classification of Pneumonia

分类

医药卫生

引用本文复制引用

彭航,邓锡泽,牛玉霞,刘洋..ResNet50模型在肺炎识别分类中的应用[J].福建电脑,2024,40(4):9-13,5.

基金项目

本文得到宁夏自然科学基金(No.2023AAC03293)资助. (No.2023AAC03293)

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文