| 注册
首页|期刊导航|福建电脑|引入CoordConv卷积的管制物品检测网络设计

引入CoordConv卷积的管制物品检测网络设计

何松 刘文鑫 陈鑫

福建电脑2024,Vol.40Issue(4):30-34,5.
福建电脑2024,Vol.40Issue(4):30-34,5.DOI:10.16707/j.cnki.fjpc.2024.04.007

引入CoordConv卷积的管制物品检测网络设计

Design of Controlled Item Detection Network by Introducing CoordConv Convolution

何松 1刘文鑫 2陈鑫2

作者信息

  • 1. 赣州市大数据发展有限公司 江西 赣州 341000
  • 2. 江西理工大学信息工程学院 江西 赣州 341000
  • 折叠

摘要

Abstract

The detection algorithm for controlled items with small targets has the problem of poor performance.To solve this problem,this paper proposes an improved YOLOv5 controlled item detection algorithm.Firstly,the CoordConv module is introduced into the network to represent the coordinates of feature map pixels.Then,the C2f module is introduced into the network to simultaneously utilize both detail and semantic information at different scales,improving the network's feature extraction ability and receptive field.The performance verification results of the algorithm show that compared to the YOLOv5 algorithm,our algorithm performs better on the Easy,Hard,and Hidden test sets mAP@.5.95 increased by 2.5,1.8,and 4.4 percentage points respectively,indicating that the detection accuracy of the algorithm in this paper is relatively high.

关键词

管制物品检测/小目标/检测算法

Key words

Controlled Substance Detection/Small Target/Detection Algorithm

分类

信息技术与安全科学

引用本文复制引用

何松,刘文鑫,陈鑫..引入CoordConv卷积的管制物品检测网络设计[J].福建电脑,2024,40(4):30-34,5.

基金项目

本文得到江西省研究生创新专项(No.YC2023-S662)资助. (No.YC2023-S662)

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文